sklearn.ensemble
.VotingClassifier¶
-
class
sklearn.ensemble.
VotingClassifier
(estimators, voting='hard', weights=None, n_jobs=None, flatten_transform=True)[source]¶ Soft Voting/Majority Rule classifier for unfitted estimators.
New in version 0.17.
Read more in the User Guide.
- Parameters
- estimatorslist of (str, estimator) tuples
Invoking the
fit
method on theVotingClassifier
will fit clones of those original estimators that will be stored in the class attributeself.estimators_
. An estimator can be set to'drop'
usingset_params
.Deprecated since version 0.22: Using
None
to drop an estimator is deprecated in 0.22 and support will be dropped in 0.24. Use the string'drop'
instead.- votingstr, {‘hard’, ‘soft’} (default=’hard’)
If ‘hard’, uses predicted class labels for majority rule voting. Else if ‘soft’, predicts the class label based on the argmax of the sums of the predicted probabilities, which is recommended for an ensemble of well-calibrated classifiers.
- weightsarray-like, shape (n_classifiers,), optional (default=`None`)
Sequence of weights (
float
orint
) to weight the occurrences of predicted class labels (hard
voting) or class probabilities before averaging (soft
voting). Uses uniform weights ifNone
.- n_jobsint or None, optional (default=None)
The number of jobs to run in parallel for
fit
.None
means 1 unless in ajoblib.parallel_backend
context.-1
means using all processors. See Glossary for more details.- flatten_transformbool, optional (default=True)
Affects shape of transform output only when voting=’soft’ If voting=’soft’ and flatten_transform=True, transform method returns matrix with shape (n_samples, n_classifiers * n_classes). If flatten_transform=False, it returns (n_classifiers, n_samples, n_classes).
- Attributes
- estimators_list of classifiers
The collection of fitted sub-estimators as defined in
estimators
that are not ‘drop’.- named_estimators_Bunch object, a dictionary with attribute access
Attribute to access any fitted sub-estimators by name.
New in version 0.20.
- classes_array-like, shape (n_predictions,)
The classes labels.
See also
VotingRegressor
Prediction voting regressor.
Examples
>>> import numpy as np >>> from sklearn.linear_model import LogisticRegression >>> from sklearn.naive_bayes import GaussianNB >>> from sklearn.ensemble import RandomForestClassifier, VotingClassifier >>> clf1 = LogisticRegression(multi_class='multinomial', random_state=1) >>> clf2 = RandomForestClassifier(n_estimators=50, random_state=1) >>> clf3 = GaussianNB() >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> y = np.array([1, 1, 1, 2, 2, 2]) >>> eclf1 = VotingClassifier(estimators=[ ... ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard') >>> eclf1 = eclf1.fit(X, y) >>> print(eclf1.predict(X)) [1 1 1 2 2 2] >>> np.array_equal(eclf1.named_estimators_.lr.predict(X), ... eclf1.named_estimators_['lr'].predict(X)) True >>> eclf2 = VotingClassifier(estimators=[ ... ('lr', clf1), ('rf', clf2), ('gnb', clf3)], ... voting='soft') >>> eclf2 = eclf2.fit(X, y) >>> print(eclf2.predict(X)) [1 1 1 2 2 2] >>> eclf3 = VotingClassifier(estimators=[ ... ('lr', clf1), ('rf', clf2), ('gnb', clf3)], ... voting='soft', weights=[2,1,1], ... flatten_transform=True) >>> eclf3 = eclf3.fit(X, y) >>> print(eclf3.predict(X)) [1 1 1 2 2 2] >>> print(eclf3.transform(X).shape) (6, 6)
Methods
fit
(self, X, y[, sample_weight])Fit the estimators.
fit_transform
(self, X[, y])Fit to data, then transform it.
get_params
(self[, deep])Get the parameters of an estimator from the ensemble.
predict
(self, X)Predict class labels for X.
score
(self, X, y[, sample_weight])Return the mean accuracy on the given test data and labels.
set_params
(self, \*\*params)Set the parameters of an estimator from the ensemble.
transform
(self, X)Return class labels or probabilities for X for each estimator.
-
__init__
(self, estimators, voting='hard', weights=None, n_jobs=None, flatten_transform=True)[source]¶ Initialize self. See help(type(self)) for accurate signature.
-
fit
(self, X, y, sample_weight=None)[source]¶ Fit the estimators.
- Parameters
- X{array-like, sparse matrix}, shape (n_samples, n_features)
Training vectors, where n_samples is the number of samples and n_features is the number of features.
- yarray-like, shape (n_samples,)
Target values.
- sample_weightarray-like, shape (n_samples,) or None
Sample weights. If None, then samples are equally weighted. Note that this is supported only if all underlying estimators support sample weights.
- Returns
- selfobject
-
fit_transform
(self, X, y=None, **fit_params)[source]¶ Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
- Parameters
- Xnumpy array of shape [n_samples, n_features]
Training set.
- ynumpy array of shape [n_samples]
Target values.
- **fit_paramsdict
Additional fit parameters.
- Returns
- X_newnumpy array of shape [n_samples, n_features_new]
Transformed array.
-
get_params
(self, deep=True)[source]¶ Get the parameters of an estimator from the ensemble.
- Parameters
- deepbool
Setting it to True gets the various classifiers and the parameters of the classifiers as well.
-
predict
(self, X)[source]¶ Predict class labels for X.
- Parameters
- X{array-like, sparse matrix}, shape (n_samples, n_features)
The input samples.
- Returns
- majarray-like, shape (n_samples,)
Predicted class labels.
-
property
predict_proba
¶ Compute probabilities of possible outcomes for samples in X.
- Parameters
- X{array-like, sparse matrix}, shape (n_samples, n_features)
The input samples.
- Returns
- avgarray-like, shape (n_samples, n_classes)
Weighted average probability for each class per sample.
-
score
(self, X, y, sample_weight=None)[source]¶ Return the mean accuracy on the given test data and labels.
In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.
- Parameters
- Xarray-like of shape (n_samples, n_features)
Test samples.
- yarray-like of shape (n_samples,) or (n_samples, n_outputs)
True labels for X.
- sample_weightarray-like of shape (n_samples,), default=None
Sample weights.
- Returns
- scorefloat
Mean accuracy of self.predict(X) wrt. y.
-
set_params
(self, **params)[source]¶ Set the parameters of an estimator from the ensemble.
Valid parameter keys can be listed with
get_params()
.- Parameters
- **paramskeyword arguments
Specific parameters using e.g.
set_params(parameter_name=new_value)
. In addition, to setting the parameters of the stacking estimator, the individual estimator of the stacking estimators can also be set, or can be removed by setting them to ‘drop’.
-
transform
(self, X)[source]¶ Return class labels or probabilities for X for each estimator.
- Parameters
- X{array-like, sparse matrix}, shape (n_samples, n_features)
Training vectors, where n_samples is the number of samples and n_features is the number of features.
- Returns
- probabilities_or_labels
- If
voting='soft'
andflatten_transform=True
: returns array-like of shape (n_classifiers, n_samples * n_classes), being class probabilities calculated by each classifier.
- If
voting='soft' and `flatten_transform=False
: array-like of shape (n_classifiers, n_samples, n_classes)
- If
voting='hard'
: array-like of shape (n_samples, n_classifiers), being class labels predicted by each classifier.
- If