This is documentation for an old release of Scikit-learn (version 0.22). Try the latest stable release (version 1.6) or development (unstable) versions.
sklearn.datasets
.make_moons¶
-
sklearn.datasets.
make_moons
(n_samples=100, shuffle=True, noise=None, random_state=None)[source]¶ Make two interleaving half circles
A simple toy dataset to visualize clustering and classification algorithms. Read more in the User Guide.
- Parameters
- n_samplesint, optional (default=100)
The total number of points generated.
- shufflebool, optional (default=True)
Whether to shuffle the samples.
- noisedouble or None (default=None)
Standard deviation of Gaussian noise added to the data.
- random_stateint, RandomState instance or None (default)
Determines random number generation for dataset shuffling and noise. Pass an int for reproducible output across multiple function calls. See Glossary.
- Returns
- Xarray of shape [n_samples, 2]
The generated samples.
- yarray of shape [n_samples]
The integer labels (0 or 1) for class membership of each sample.