sklearn.datasets
.make_friedman2¶
-
sklearn.datasets.
make_friedman2
(n_samples=100, noise=0.0, random_state=None)[source]¶ Generate the “Friedman #2” regression problem
This dataset is described in Friedman [1] and Breiman [2].
Inputs
X
are 4 independent features uniformly distributed on the intervals:0 <= X[:, 0] <= 100, 40 * pi <= X[:, 1] <= 560 * pi, 0 <= X[:, 2] <= 1, 1 <= X[:, 3] <= 11.
The output
y
is created according to the formula:y(X) = (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5 + noise * N(0, 1).
Read more in the User Guide.
- Parameters
- n_samplesint, optional (default=100)
The number of samples.
- noisefloat, optional (default=0.0)
The standard deviation of the gaussian noise applied to the output.
- random_stateint, RandomState instance or None (default)
Determines random number generation for dataset noise. Pass an int for reproducible output across multiple function calls. See Glossary.
- Returns
- Xarray of shape [n_samples, 4]
The input samples.
- yarray of shape [n_samples]
The output values.
References
- 1
J. Friedman, “Multivariate adaptive regression splines”, The Annals of Statistics 19 (1), pages 1-67, 1991.
- 2
L. Breiman, “Bagging predictors”, Machine Learning 24, pages 123-140, 1996.