sklearn
.config_context¶
-
sklearn.
config_context
(**new_config)[source]¶ Context manager for global scikit-learn configuration
- Parameters
- assume_finitebool, optional
If True, validation for finiteness will be skipped, saving time, but leading to potential crashes. If False, validation for finiteness will be performed, avoiding error. Global default: False.
- working_memoryint, optional
If set, scikit-learn will attempt to limit the size of temporary arrays to this number of MiB (per job when parallelised), often saving both computation time and memory on expensive operations that can be performed in chunks. Global default: 1024.
- print_changed_onlybool, optional
If True, only the parameters that were set to non-default values will be printed when printing an estimator. For example,
print(SVC())
while True will only print ‘SVC()’ while the default behaviour would be to print ‘SVC(C=1.0, cache_size=200, …)’ with all the non-changed parameters.
See also
set_config
Set global scikit-learn configuration
get_config
Retrieve current values of the global configuration
Notes
All settings, not just those presently modified, will be returned to their previous values when the context manager is exited. This is not thread-safe.
Examples
>>> import sklearn >>> from sklearn.utils.validation import assert_all_finite >>> with sklearn.config_context(assume_finite=True): ... assert_all_finite([float('nan')]) >>> with sklearn.config_context(assume_finite=True): ... with sklearn.config_context(assume_finite=False): ... assert_all_finite([float('nan')]) Traceback (most recent call last): ... ValueError: Input contains NaN, ...