logo
  • Install
  • User Guide
  • API
  • Examples
  • Getting Started
  • Tutorial
  • Glossary
  • Development
  • FAQ
  • Related packages
  • Roadmap
  • About us
  • GitHub
  • Other Versions
  • More
    Getting Started Tutorial Glossary Development FAQ Related packages Roadmap About us GitHub Other Versions
logo
PrevUp Next

scikit-learn 0.22.2
Other versions

Please cite us if you use the software.

  • 3. Model selection and evaluation

3. Model selection and evaluation¶

  • 3.1. Cross-validation: evaluating estimator performance
    • 3.1.1. Computing cross-validated metrics
    • 3.1.2. Cross validation iterators
    • 3.1.3. A note on shuffling
    • 3.1.4. Cross validation and model selection
  • 3.2. Tuning the hyper-parameters of an estimator
    • 3.2.1. Exhaustive Grid Search
    • 3.2.2. Randomized Parameter Optimization
    • 3.2.3. Tips for parameter search
    • 3.2.4. Alternatives to brute force parameter search
  • 3.3. Metrics and scoring: quantifying the quality of predictions
    • 3.3.1. The scoring parameter: defining model evaluation rules
    • 3.3.2. Classification metrics
    • 3.3.3. Multilabel ranking metrics
    • 3.3.4. Regression metrics
    • 3.3.5. Clustering metrics
    • 3.3.6. Dummy estimators
  • 3.4. Model persistence
    • 3.4.1. Persistence example
    • 3.4.2. Security & maintainability limitations
  • 3.5. Validation curves: plotting scores to evaluate models
    • 3.5.1. Validation curve
    • 3.5.2. Learning curve
© 2007 - 2019, scikit-learn developers (BSD License). Show this page source