Note
Click here to download the full example code or to run this example in your browser via Binder
FeatureHasher and DictVectorizer Comparison¶
Compares FeatureHasher and DictVectorizer by using both to vectorize text documents.
The example demonstrates syntax and speed only; it doesn’t actually do anything useful with the extracted vectors. See the example scripts {document_classification_20newsgroups,clustering}.py for actual learning on text documents.
A discrepancy between the number of terms reported for DictVectorizer and for FeatureHasher is to be expected due to hash collisions.
Out:
Usage: /home/circleci/project/examples/text/plot_hashing_vs_dict_vectorizer.py [n_features_for_hashing]
The default number of features is 2**18.
Loading 20 newsgroups training data
3803 documents - 6.245MB
DictVectorizer
done in 1.105289s at 5.650MB/s
Found 47928 unique terms
FeatureHasher on frequency dicts
done in 0.777673s at 8.030MB/s
Found 43873 unique terms
FeatureHasher on raw tokens
done in 0.651078s at 9.591MB/s
Found 43873 unique terms
# Author: Lars Buitinck
# License: BSD 3 clause
from collections import defaultdict
import re
import sys
from time import time
import numpy as np
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction import DictVectorizer, FeatureHasher
def n_nonzero_columns(X):
"""Returns the number of non-zero columns in a CSR matrix X."""
return len(np.unique(X.nonzero()[1]))
def tokens(doc):
"""Extract tokens from doc.
This uses a simple regex to break strings into tokens. For a more
principled approach, see CountVectorizer or TfidfVectorizer.
"""
return (tok.lower() for tok in re.findall(r"\w+", doc))
def token_freqs(doc):
"""Extract a dict mapping tokens from doc to their frequencies."""
freq = defaultdict(int)
for tok in tokens(doc):
freq[tok] += 1
return freq
categories = [
'alt.atheism',
'comp.graphics',
'comp.sys.ibm.pc.hardware',
'misc.forsale',
'rec.autos',
'sci.space',
'talk.religion.misc',
]
# Uncomment the following line to use a larger set (11k+ documents)
# categories = None
print(__doc__)
print("Usage: %s [n_features_for_hashing]" % sys.argv[0])
print(" The default number of features is 2**18.")
print()
try:
n_features = int(sys.argv[1])
except IndexError:
n_features = 2 ** 18
except ValueError:
print("not a valid number of features: %r" % sys.argv[1])
sys.exit(1)
print("Loading 20 newsgroups training data")
raw_data, _ = fetch_20newsgroups(subset='train', categories=categories,
return_X_y=True)
data_size_mb = sum(len(s.encode('utf-8')) for s in raw_data) / 1e6
print("%d documents - %0.3fMB" % (len(raw_data), data_size_mb))
print()
print("DictVectorizer")
t0 = time()
vectorizer = DictVectorizer()
vectorizer.fit_transform(token_freqs(d) for d in raw_data)
duration = time() - t0
print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration))
print("Found %d unique terms" % len(vectorizer.get_feature_names()))
print()
print("FeatureHasher on frequency dicts")
t0 = time()
hasher = FeatureHasher(n_features=n_features)
X = hasher.transform(token_freqs(d) for d in raw_data)
duration = time() - t0
print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration))
print("Found %d unique terms" % n_nonzero_columns(X))
print()
print("FeatureHasher on raw tokens")
t0 = time()
hasher = FeatureHasher(n_features=n_features, input_type="string")
X = hasher.transform(tokens(d) for d in raw_data)
duration = time() - t0
print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration))
print("Found %d unique terms" % n_nonzero_columns(X))
Total running time of the script: ( 0 minutes 3.154 seconds)
Estimated memory usage: 42 MB