Note
Click here to download the full example code or to run this example in your browser via Binder
Compact estimator representations¶
This example illustrates the use of the print_changed_only global parameter.
Setting print_changed_only to True will alternate the representation of estimators to only show the parameters that have been set to non-default values. This can be used to have more compact representations.
Out:
Default representation:
LogisticRegression(penalty='l1')
With changed_only option:
LogisticRegression(penalty='l1')
print(__doc__)
from sklearn.linear_model import LogisticRegression
from sklearn import set_config
lr = LogisticRegression(penalty='l1')
print('Default representation:')
print(lr)
# LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
# intercept_scaling=1, l1_ratio=None, max_iter=100,
# multi_class='auto', n_jobs=None, penalty='l1',
# random_state=None, solver='warn', tol=0.0001, verbose=0,
# warm_start=False)
set_config(print_changed_only=True)
print('\nWith changed_only option:')
print(lr)
# LogisticRegression(penalty='l1')
Total running time of the script: ( 0 minutes 0.097 seconds)
Estimated memory usage: 8 MB