This is documentation for an old release of Scikit-learn (version 0.22). Try the latest stable release (version 1.6) or development (unstable) versions.
Note
Click here to download the full example code or to run this example in your browser via Binder
Lasso and Elastic Net for Sparse Signals¶
Estimates Lasso and Elastic-Net regression models on a manually generated sparse signal corrupted with an additive noise. Estimated coefficients are compared with the ground-truth.

Out:
Lasso(alpha=0.1)
r^2 on test data : 0.658064
ElasticNet(alpha=0.1, l1_ratio=0.7)
r^2 on test data : 0.642515
print(__doc__)
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import r2_score
# #############################################################################
# Generate some sparse data to play with
np.random.seed(42)
n_samples, n_features = 50, 100
X = np.random.randn(n_samples, n_features)
# Decreasing coef w. alternated signs for visualization
idx = np.arange(n_features)
coef = (-1) ** idx * np.exp(-idx / 10)
coef[10:] = 0 # sparsify coef
y = np.dot(X, coef)
# Add noise
y += 0.01 * np.random.normal(size=n_samples)
# Split data in train set and test set
n_samples = X.shape[0]
X_train, y_train = X[:n_samples // 2], y[:n_samples // 2]
X_test, y_test = X[n_samples // 2:], y[n_samples // 2:]
# #############################################################################
# Lasso
from sklearn.linear_model import Lasso
alpha = 0.1
lasso = Lasso(alpha=alpha)
y_pred_lasso = lasso.fit(X_train, y_train).predict(X_test)
r2_score_lasso = r2_score(y_test, y_pred_lasso)
print(lasso)
print("r^2 on test data : %f" % r2_score_lasso)
# #############################################################################
# ElasticNet
from sklearn.linear_model import ElasticNet
enet = ElasticNet(alpha=alpha, l1_ratio=0.7)
y_pred_enet = enet.fit(X_train, y_train).predict(X_test)
r2_score_enet = r2_score(y_test, y_pred_enet)
print(enet)
print("r^2 on test data : %f" % r2_score_enet)
m, s, _ = plt.stem(np.where(enet.coef_)[0], enet.coef_[enet.coef_ != 0],
markerfmt='x', label='Elastic net coefficients',
use_line_collection=True)
plt.setp([m, s], color="#2ca02c")
m, s, _ = plt.stem(np.where(lasso.coef_)[0], lasso.coef_[lasso.coef_ != 0],
markerfmt='x', label='Lasso coefficients',
use_line_collection=True)
plt.setp([m, s], color='#ff7f0e')
plt.stem(np.where(coef)[0], coef[coef != 0], label='true coefficients',
markerfmt='bx', use_line_collection=True)
plt.legend(loc='best')
plt.title("Lasso $R^2$: %.3f, Elastic Net $R^2$: %.3f"
% (r2_score_lasso, r2_score_enet))
plt.show()
Total running time of the script: ( 0 minutes 0.552 seconds)
Estimated memory usage: 8 MB