sklearn.linear_model
.lars_path_gram¶
-
sklearn.linear_model.
lars_path_gram
(Xy, Gram, n_samples, max_iter=500, alpha_min=0, method=’lar’, copy_X=True, eps=2.220446049250313e-16, copy_Gram=True, verbose=0, return_path=True, return_n_iter=False, positive=False)[source]¶ lars_path in the sufficient stats mode [1]
The optimization objective for the case method=’lasso’ is:
(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1
in the case of method=’lars’, the objective function is only known in the form of an implicit equation (see discussion in [1])
Read more in the User Guide.
Parameters: - Xy : array-like, shape (n_samples,) or (n_samples, n_targets)
Xy = np.dot(X.T, y).
- Gram : array, shape (n_features, n_features)
Gram = np.dot(X.T * X).
- n_samples : integer or float
Equivalent size of sample.
- max_iter : integer, optional (default=500)
Maximum number of iterations to perform, set to infinity for no limit.
- alpha_min : float, optional (default=0)
Minimum correlation along the path. It corresponds to the regularization parameter alpha parameter in the Lasso.
- method : {‘lar’, ‘lasso’}, optional (default=’lar’)
Specifies the returned model. Select
'lar'
for Least Angle Regression,'lasso'
for the Lasso.- copy_X : bool, optional (default=True)
If
False
,X
is overwritten.- eps : float, optional (default=``np.finfo(np.float).eps``)
The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems.
- copy_Gram : bool, optional (default=True)
If
False
,Gram
is overwritten.- verbose : int (default=0)
Controls output verbosity.
- return_path : bool, optional (default=True)
If
return_path==True
returns the entire path, else returns only the last point of the path.- return_n_iter : bool, optional (default=False)
Whether to return the number of iterations.
- positive : boolean (default=False)
Restrict coefficients to be >= 0. This option is only allowed with method ‘lasso’. Note that the model coefficients will not converge to the ordinary-least-squares solution for small values of alpha. Only coefficients up to the smallest alpha value (
alphas_[alphas_ > 0.].min()
when fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congruence with the solution of the coordinate descent lasso_path function.
Returns: - alphas : array, shape (n_alphas + 1,)
Maximum of covariances (in absolute value) at each iteration.
n_alphas
is eithermax_iter
,n_features
or the number of nodes in the path withalpha >= alpha_min
, whichever is smaller.- active : array, shape [n_alphas]
Indices of active variables at the end of the path.
- coefs : array, shape (n_features, n_alphas + 1)
Coefficients along the path
- n_iter : int
Number of iterations run. Returned only if return_n_iter is set to True.
See also
lars_path
lasso_path
lasso_path_gram
LassoLars
Lars
LassoLarsCV
LarsCV
sklearn.decomposition.sparse_encode
References
[1] “Least Angle Regression”, Efron et al. http://statweb.stanford.edu/~tibs/ftp/lars.pdf [2] Wikipedia entry on the Least-angle regression [3] Wikipedia entry on the Lasso