sklearn.decomposition
.sparse_encode¶
-
sklearn.decomposition.
sparse_encode
(X, dictionary, gram=None, cov=None, algorithm=’lasso_lars’, n_nonzero_coefs=None, alpha=None, copy_cov=True, init=None, max_iter=1000, n_jobs=None, check_input=True, verbose=0, positive=False)[source]¶ Sparse coding
Each row of the result is the solution to a sparse coding problem. The goal is to find a sparse array
code
such that:X ~= code * dictionary
Read more in the User Guide.
Parameters: - X : array of shape (n_samples, n_features)
Data matrix
- dictionary : array of shape (n_components, n_features)
The dictionary matrix against which to solve the sparse coding of the data. Some of the algorithms assume normalized rows for meaningful output.
- gram : array, shape=(n_components, n_components)
Precomputed Gram matrix, dictionary * dictionary’
- cov : array, shape=(n_components, n_samples)
Precomputed covariance, dictionary’ * X
- algorithm : {‘lasso_lars’, ‘lasso_cd’, ‘lars’, ‘omp’, ‘threshold’}
lars: uses the least angle regression method (linear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal matching pursuit to estimate the sparse solution threshold: squashes to zero all coefficients less than alpha from the projection dictionary * X’
- n_nonzero_coefs : int, 0.1 * n_features by default
Number of nonzero coefficients to target in each column of the solution. This is only used by
algorithm='lars'
andalgorithm='omp'
and is overridden byalpha
in the Orthogonal Matching Pursuit (OMP) case.- alpha : float, 1. by default
If
algorithm='lasso_lars'
oralgorithm='lasso_cd'
,alpha
is the penalty applied to the L1 norm. Ifalgorithm='threshold'
,alpha
is the absolute value of the threshold below which coefficients will be squashed to zero. Ifalgorithm='omp'
,alpha
is the tolerance parameter: the value of the reconstruction error targeted. In this case, it overridesn_nonzero_coefs
.- copy_cov : boolean, optional
Whether to copy the precomputed covariance matrix; if False, it may be overwritten.
- init : array of shape (n_samples, n_components)
Initialization value of the sparse codes. Only used if
algorithm='lasso_cd'
.- max_iter : int, 1000 by default
Maximum number of iterations to perform if
algorithm='lasso_cd'
.- n_jobs : int or None, optional (default=None)
Number of parallel jobs to run.
None
means 1 unless in ajoblib.parallel_backend
context.-1
means using all processors. See Glossary for more details.- check_input : boolean, optional
If False, the input arrays X and dictionary will not be checked.
- verbose : int, optional
Controls the verbosity; the higher, the more messages. Defaults to 0.
- positive : boolean, optional
Whether to enforce positivity when finding the encoding.
New in version 0.20.
Returns: - code : array of shape (n_samples, n_components)
The sparse codes