sklearn.metrics
.classification_report¶
-
sklearn.metrics.
classification_report
(y_true, y_pred, labels=None, target_names=None, sample_weight=None, digits=2, output_dict=False)[source]¶ Build a text report showing the main classification metrics
Read more in the User Guide.
Parameters: - y_true : 1d array-like, or label indicator array / sparse matrix
Ground truth (correct) target values.
- y_pred : 1d array-like, or label indicator array / sparse matrix
Estimated targets as returned by a classifier.
- labels : array, shape = [n_labels]
Optional list of label indices to include in the report.
- target_names : list of strings
Optional display names matching the labels (same order).
- sample_weight : array-like of shape = [n_samples], optional
Sample weights.
- digits : int
Number of digits for formatting output floating point values. When
output_dict
isTrue
, this will be ignored and the returned values will not be rounded.- output_dict : bool (default = False)
If True, return output as dict
Returns: - report : string / dict
Text summary of the precision, recall, F1 score for each class. Dictionary returned if output_dict is True. Dictionary has the following structure:
{'label 1': {'precision':0.5, 'recall':1.0, 'f1-score':0.67, 'support':1}, 'label 2': { ... }, ... }
The reported averages include micro average (averaging the total true positives, false negatives and false positives), macro average (averaging the unweighted mean per label), weighted average (averaging the support-weighted mean per label) and sample average (only for multilabel classification). See also
precision_recall_fscore_support
for more details on averages.Note that in binary classification, recall of the positive class is also known as “sensitivity”; recall of the negative class is “specificity”.
Examples
>>> from sklearn.metrics import classification_report >>> y_true = [0, 1, 2, 2, 2] >>> y_pred = [0, 0, 2, 2, 1] >>> target_names = ['class 0', 'class 1', 'class 2'] >>> print(classification_report(y_true, y_pred, target_names=target_names)) precision recall f1-score support class 0 0.50 1.00 0.67 1 class 1 0.00 0.00 0.00 1 class 2 1.00 0.67 0.80 3 micro avg 0.60 0.60 0.60 5 macro avg 0.50 0.56 0.49 5 weighted avg 0.70 0.60 0.61 5