3.2.4.1.8. sklearn.linear_model
.OrthogonalMatchingPursuitCV¶
-
class
sklearn.linear_model.
OrthogonalMatchingPursuitCV
(copy=True, fit_intercept=True, normalize=True, max_iter=None, cv='warn', n_jobs=None, verbose=False)[source]¶ Cross-validated Orthogonal Matching Pursuit model (OMP).
See glossary entry for cross-validation estimator.
Read more in the User Guide.
Parameters: - copy : bool, optional
Whether the design matrix X must be copied by the algorithm. A false value is only helpful if X is already Fortran-ordered, otherwise a copy is made anyway.
- fit_intercept : boolean, optional
whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered).
- normalize : boolean, optional, default True
This parameter is ignored when
fit_intercept
is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please usesklearn.preprocessing.StandardScaler
before callingfit
on an estimator withnormalize=False
.- max_iter : integer, optional
Maximum numbers of iterations to perform, therefore maximum features to include. 10% of
n_features
but at least 5 if available.- cv : int, cross-validation generator or an iterable, optional
Determines the cross-validation splitting strategy. Possible inputs for cv are:
- None, to use the default 3-fold cross-validation,
- integer, to specify the number of folds.
- CV splitter,
- An iterable yielding (train, test) splits as arrays of indices.
For integer/None inputs,
KFold
is used.Refer User Guide for the various cross-validation strategies that can be used here.
Changed in version 0.20:
cv
default value if None will change from 3-fold to 5-fold in v0.22.- n_jobs : int or None, optional (default=None)
Number of CPUs to use during the cross validation.
None
means 1 unless in ajoblib.parallel_backend
context.-1
means using all processors. See Glossary for more details.- verbose : boolean or integer, optional
Sets the verbosity amount
Attributes: - intercept_ : float or array, shape (n_targets,)
Independent term in decision function.
- coef_ : array, shape (n_features,) or (n_targets, n_features)
Parameter vector (w in the problem formulation).
- n_nonzero_coefs_ : int
Estimated number of non-zero coefficients giving the best mean squared error over the cross-validation folds.
- n_iter_ : int or array-like
Number of active features across every target for the model refit with the best hyperparameters got by cross-validating across all folds.
See also
orthogonal_mp
,orthogonal_mp_gram
,lars_path
,Lars
,LassoLars
,OrthogonalMatchingPursuit
,LarsCV
,LassoLarsCV
,decomposition.sparse_encode
Examples
>>> from sklearn.linear_model import OrthogonalMatchingPursuitCV >>> from sklearn.datasets import make_regression >>> X, y = make_regression(n_features=100, n_informative=10, ... noise=4, random_state=0) >>> reg = OrthogonalMatchingPursuitCV(cv=5).fit(X, y) >>> reg.score(X, y) 0.9991... >>> reg.n_nonzero_coefs_ 10 >>> reg.predict(X[:1,]) array([-78.3854...])
Methods
fit
(X, y)Fit the model using X, y as training data. get_params
([deep])Get parameters for this estimator. predict
(X)Predict using the linear model score
(X, y[, sample_weight])Returns the coefficient of determination R^2 of the prediction. set_params
(**params)Set the parameters of this estimator. -
__init__
(copy=True, fit_intercept=True, normalize=True, max_iter=None, cv='warn', n_jobs=None, verbose=False)[source]¶
-
fit
(X, y)[source]¶ Fit the model using X, y as training data.
Parameters: - X : array-like, shape [n_samples, n_features]
Training data.
- y : array-like, shape [n_samples]
Target values. Will be cast to X’s dtype if necessary
Returns: - self : object
returns an instance of self.
-
get_params
(deep=True)[source]¶ Get parameters for this estimator.
Parameters: - deep : boolean, optional
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: - params : mapping of string to any
Parameter names mapped to their values.
-
predict
(X)[source]¶ Predict using the linear model
Parameters: - X : array_like or sparse matrix, shape (n_samples, n_features)
Samples.
Returns: - C : array, shape (n_samples,)
Returns predicted values.
-
score
(X, y, sample_weight=None)[source]¶ Returns the coefficient of determination R^2 of the prediction.
The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) ** 2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.
Parameters: - X : array-like, shape = (n_samples, n_features)
Test samples. For some estimators this may be a precomputed kernel matrix instead, shape = (n_samples, n_samples_fitted], where n_samples_fitted is the number of samples used in the fitting for the estimator.
- y : array-like, shape = (n_samples) or (n_samples, n_outputs)
True values for X.
- sample_weight : array-like, shape = [n_samples], optional
Sample weights.
Returns: - score : float
R^2 of self.predict(X) wrt. y.
-
set_params
(**params)[source]¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.Returns: - self