sklearn.linear_model
.MultiTaskElasticNet¶
-
class
sklearn.linear_model.
MultiTaskElasticNet
(alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, copy_X=True, max_iter=1000, tol=0.0001, warm_start=False, random_state=None, selection='cyclic')[source]¶ Multi-task ElasticNet model trained with L1/L2 mixed-norm as regularizer
The optimization objective for MultiTaskElasticNet is:
(1 / (2 * n_samples)) * ||Y - XW||_Fro^2 + alpha * l1_ratio * ||W||_21 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2
Where:
||W||_21 = sum_i sqrt(sum_j w_ij ^ 2)
i.e. the sum of norm of each row.
Read more in the User Guide.
Parameters: - alpha : float, optional
Constant that multiplies the L1/L2 term. Defaults to 1.0
- l1_ratio : float
The ElasticNet mixing parameter, with 0 < l1_ratio <= 1. For l1_ratio = 1 the penalty is an L1/L2 penalty. For l1_ratio = 0 it is an L2 penalty. For
0 < l1_ratio < 1
, the penalty is a combination of L1/L2 and L2.- fit_intercept : boolean
whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered).
- normalize : boolean, optional, default False
This parameter is ignored when
fit_intercept
is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please usesklearn.preprocessing.StandardScaler
before callingfit
on an estimator withnormalize=False
.- copy_X : boolean, optional, default True
If
True
, X will be copied; else, it may be overwritten.- max_iter : int, optional
The maximum number of iterations
- tol : float, optional
The tolerance for the optimization: if the updates are smaller than
tol
, the optimization code checks the dual gap for optimality and continues until it is smaller thantol
.- warm_start : bool, optional
When set to
True
, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. See the Glossary.- random_state : int, RandomState instance or None, optional, default None
The seed of the pseudo random number generator that selects a random feature to update. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random. Used when
selection
== ‘random’.- selection : str, default ‘cyclic’
If set to ‘random’, a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to ‘random’) often leads to significantly faster convergence especially when tol is higher than 1e-4.
Attributes: - intercept_ : array, shape (n_tasks,)
Independent term in decision function.
- coef_ : array, shape (n_tasks, n_features)
Parameter vector (W in the cost function formula). If a 1D y is passed in at fit (non multi-task usage),
coef_
is then a 1D array. Note thatcoef_
stores the transpose ofW
,W.T
.- n_iter_ : int
number of iterations run by the coordinate descent solver to reach the specified tolerance.
See also
MultiTaskElasticNet
- Multi-task L1/L2 ElasticNet with built-in cross-validation.
Notes
The algorithm used to fit the model is coordinate descent.
To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array.
Examples
>>> from sklearn import linear_model >>> clf = linear_model.MultiTaskElasticNet(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [[0, 0], [1, 1], [2, 2]]) ... MultiTaskElasticNet(alpha=0.1, copy_X=True, fit_intercept=True, l1_ratio=0.5, max_iter=1000, normalize=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) >>> print(clf.coef_) [[0.45663524 0.45612256] [0.45663524 0.45612256]] >>> print(clf.intercept_) [0.0872422 0.0872422]
Methods
fit
(X, y)Fit MultiTaskElasticNet model with coordinate descent get_params
([deep])Get parameters for this estimator. path
(X, y[, l1_ratio, eps, n_alphas, …])Compute elastic net path with coordinate descent predict
(X)Predict using the linear model score
(X, y[, sample_weight])Returns the coefficient of determination R^2 of the prediction. set_params
(**params)Set the parameters of this estimator. -
__init__
(alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, copy_X=True, max_iter=1000, tol=0.0001, warm_start=False, random_state=None, selection='cyclic')[source]¶
-
fit
(X, y)[source]¶ Fit MultiTaskElasticNet model with coordinate descent
Parameters: - X : ndarray, shape (n_samples, n_features)
Data
- y : ndarray, shape (n_samples, n_tasks)
Target. Will be cast to X’s dtype if necessary
Notes
Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically convert the X input as a Fortran-contiguous numpy array if necessary.
To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format.
-
get_params
(deep=True)[source]¶ Get parameters for this estimator.
Parameters: - deep : boolean, optional
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: - params : mapping of string to any
Parameter names mapped to their values.
-
path
(X, y, l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, precompute='auto', Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, positive=False, check_input=True, **params)[source]¶ Compute elastic net path with coordinate descent
The elastic net optimization function varies for mono and multi-outputs.
For mono-output tasks it is:
1 / (2 * n_samples) * ||y - Xw||^2_2 + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2
For multi-output tasks it is:
(1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * l1_ratio * ||W||_21 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2
Where:
||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}
i.e. the sum of norm of each row.
Read more in the User Guide.
Parameters: - X : {array-like}, shape (n_samples, n_features)
Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication. If
y
is mono-output thenX
can be sparse.- y : ndarray, shape (n_samples,) or (n_samples, n_outputs)
Target values
- l1_ratio : float, optional
float between 0 and 1 passed to elastic net (scaling between l1 and l2 penalties).
l1_ratio=1
corresponds to the Lasso- eps : float
Length of the path.
eps=1e-3
means thatalpha_min / alpha_max = 1e-3
- n_alphas : int, optional
Number of alphas along the regularization path
- alphas : ndarray, optional
List of alphas where to compute the models. If None alphas are set automatically
- precompute : True | False | ‘auto’ | array-like
Whether to use a precomputed Gram matrix to speed up calculations. If set to
'auto'
let us decide. The Gram matrix can also be passed as argument.- Xy : array-like, optional
Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed.
- copy_X : boolean, optional, default True
If
True
, X will be copied; else, it may be overwritten.- coef_init : array, shape (n_features, ) | None
The initial values of the coefficients.
- verbose : bool or integer
Amount of verbosity.
- return_n_iter : bool
whether to return the number of iterations or not.
- positive : bool, default False
If set to True, forces coefficients to be positive. (Only allowed when
y.ndim == 1
).- check_input : bool, default True
Skip input validation checks, including the Gram matrix when provided assuming there are handled by the caller when check_input=False.
- **params : kwargs
keyword arguments passed to the coordinate descent solver.
Returns: - alphas : array, shape (n_alphas,)
The alphas along the path where models are computed.
- coefs : array, shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas)
Coefficients along the path.
- dual_gaps : array, shape (n_alphas,)
The dual gaps at the end of the optimization for each alpha.
- n_iters : array-like, shape (n_alphas,)
The number of iterations taken by the coordinate descent optimizer to reach the specified tolerance for each alpha. (Is returned when
return_n_iter
is set to True).
Notes
For an example, see examples/linear_model/plot_lasso_coordinate_descent_path.py.
-
predict
(X)[source]¶ Predict using the linear model
Parameters: - X : array_like or sparse matrix, shape (n_samples, n_features)
Samples.
Returns: - C : array, shape (n_samples,)
Returns predicted values.
-
score
(X, y, sample_weight=None)[source]¶ Returns the coefficient of determination R^2 of the prediction.
The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) ** 2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.
Parameters: - X : array-like, shape = (n_samples, n_features)
Test samples. For some estimators this may be a precomputed kernel matrix instead, shape = (n_samples, n_samples_fitted], where n_samples_fitted is the number of samples used in the fitting for the estimator.
- y : array-like, shape = (n_samples) or (n_samples, n_outputs)
True values for X.
- sample_weight : array-like, shape = [n_samples], optional
Sample weights.
Returns: - score : float
R^2 of self.predict(X) wrt. y.
-
set_params
(**params)[source]¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.Returns: - self
-
sparse_coef_
¶ sparse representation of the fitted
coef_