Image denoising using dictionary learningΒΆ

An example comparing the effect of reconstructing noisy fragments of a raccoon face image using firstly online Dictionary Learning and various transform methods.

The dictionary is fitted on the distorted left half of the image, and subsequently used to reconstruct the right half. Note that even better performance could be achieved by fitting to an undistorted (i.e. noiseless) image, but here we start from the assumption that it is not available.

A common practice for evaluating the results of image denoising is by looking at the difference between the reconstruction and the original image. If the reconstruction is perfect this will look like Gaussian noise.

It can be seen from the plots that the results of Orthogonal Matching Pursuit (OMP) with two non-zero coefficients is a bit less biased than when keeping only one (the edges look less prominent). It is in addition closer from the ground truth in Frobenius norm.

The result of Least Angle Regression is much more strongly biased: the difference is reminiscent of the local intensity value of the original image.

Thresholding is clearly not useful for denoising, but it is here to show that it can produce a suggestive output with very high speed, and thus be useful for other tasks such as object classification, where performance is not necessarily related to visualisation.

  • ../../_images/sphx_glr_plot_image_denoising_001.png
  • ../../_images/sphx_glr_plot_image_denoising_002.png
  • ../../_images/sphx_glr_plot_image_denoising_003.png
  • ../../_images/sphx_glr_plot_image_denoising_004.png
  • ../../_images/sphx_glr_plot_image_denoising_005.png
  • ../../_images/sphx_glr_plot_image_denoising_006.png

Out:

Distorting image...
Extracting reference patches...
done in 0.07s.
Learning the dictionary...
done in 9.89s.
Extracting noisy patches...
done in 0.04s.
Orthogonal Matching Pursuit
1 atom...
done in 4.95s.
Orthogonal Matching Pursuit
2 atoms...
done in 9.30s.
Least-angle regression
5 atoms...
done in 73.01s.
Thresholding
 alpha=0.1...
done in 0.92s.

print(__doc__)

from time import time

import matplotlib.pyplot as plt
import numpy as np
import scipy as sp

from sklearn.decomposition import MiniBatchDictionaryLearning
from sklearn.feature_extraction.image import extract_patches_2d
from sklearn.feature_extraction.image import reconstruct_from_patches_2d


try:  # SciPy >= 0.16 have face in misc
    from scipy.misc import face
    face = face(gray=True)
except ImportError:
    face = sp.face(gray=True)

# Convert from uint8 representation with values between 0 and 255 to
# a floating point representation with values between 0 and 1.
face = face / 255.

# downsample for higher speed
face = face[::2, ::2] + face[1::2, ::2] + face[::2, 1::2] + face[1::2, 1::2]
face /= 4.0
height, width = face.shape

# Distort the right half of the image
print('Distorting image...')
distorted = face.copy()
distorted[:, width // 2:] += 0.075 * np.random.randn(height, width // 2)

# Extract all reference patches from the left half of the image
print('Extracting reference patches...')
t0 = time()
patch_size = (7, 7)
data = extract_patches_2d(distorted[:, :width // 2], patch_size)
data = data.reshape(data.shape[0], -1)
data -= np.mean(data, axis=0)
data /= np.std(data, axis=0)
print('done in %.2fs.' % (time() - t0))

# #############################################################################
# Learn the dictionary from reference patches

print('Learning the dictionary...')
t0 = time()
dico = MiniBatchDictionaryLearning(n_components=100, alpha=1, n_iter=500)
V = dico.fit(data).components_
dt = time() - t0
print('done in %.2fs.' % dt)

plt.figure(figsize=(4.2, 4))
for i, comp in enumerate(V[:100]):
    plt.subplot(10, 10, i + 1)
    plt.imshow(comp.reshape(patch_size), cmap=plt.cm.gray_r,
               interpolation='nearest')
    plt.xticks(())
    plt.yticks(())
plt.suptitle('Dictionary learned from face patches\n' +
             'Train time %.1fs on %d patches' % (dt, len(data)),
             fontsize=16)
plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23)


# #############################################################################
# Display the distorted image

def show_with_diff(image, reference, title):
    """Helper function to display denoising"""
    plt.figure(figsize=(5, 3.3))
    plt.subplot(1, 2, 1)
    plt.title('Image')
    plt.imshow(image, vmin=0, vmax=1, cmap=plt.cm.gray,
               interpolation='nearest')
    plt.xticks(())
    plt.yticks(())
    plt.subplot(1, 2, 2)
    difference = image - reference

    plt.title('Difference (norm: %.2f)' % np.sqrt(np.sum(difference ** 2)))
    plt.imshow(difference, vmin=-0.5, vmax=0.5, cmap=plt.cm.PuOr,
               interpolation='nearest')
    plt.xticks(())
    plt.yticks(())
    plt.suptitle(title, size=16)
    plt.subplots_adjust(0.02, 0.02, 0.98, 0.79, 0.02, 0.2)

show_with_diff(distorted, face, 'Distorted image')

# #############################################################################
# Extract noisy patches and reconstruct them using the dictionary

print('Extracting noisy patches... ')
t0 = time()
data = extract_patches_2d(distorted[:, width // 2:], patch_size)
data = data.reshape(data.shape[0], -1)
intercept = np.mean(data, axis=0)
data -= intercept
print('done in %.2fs.' % (time() - t0))

transform_algorithms = [
    ('Orthogonal Matching Pursuit\n1 atom', 'omp',
     {'transform_n_nonzero_coefs': 1}),
    ('Orthogonal Matching Pursuit\n2 atoms', 'omp',
     {'transform_n_nonzero_coefs': 2}),
    ('Least-angle regression\n5 atoms', 'lars',
     {'transform_n_nonzero_coefs': 5}),
    ('Thresholding\n alpha=0.1', 'threshold', {'transform_alpha': .1})]

reconstructions = {}
for title, transform_algorithm, kwargs in transform_algorithms:
    print(title + '...')
    reconstructions[title] = face.copy()
    t0 = time()
    dico.set_params(transform_algorithm=transform_algorithm, **kwargs)
    code = dico.transform(data)
    patches = np.dot(code, V)

    patches += intercept
    patches = patches.reshape(len(data), *patch_size)
    if transform_algorithm == 'threshold':
        patches -= patches.min()
        patches /= patches.max()
    reconstructions[title][:, width // 2:] = reconstruct_from_patches_2d(
        patches, (height, width // 2))
    dt = time() - t0
    print('done in %.2fs.' % dt)
    show_with_diff(reconstructions[title], face,
                   title + ' (time: %.1fs)' % dt)

plt.show()

Total running time of the script: ( 1 minutes 40.780 seconds)

Gallery generated by Sphinx-Gallery