This is documentation for an old release of Scikit-learn (version 0.19). Try the latest stable release (version 1.6) or development (unstable) versions.
Label Propagation digits active learning¶
Demonstrates an active learning technique to learn handwritten digits using label propagation.
We start by training a label propagation model with only 10 labeled points, then we select the top five most uncertain points to label. Next, we train with 15 labeled points (original 10 + 5 new ones). We repeat this process four times to have a model trained with 30 labeled examples. Note you can increase this to label more than 30 by changing max_iterations. Labeling more than 30 can be useful to get a sense for the speed of convergence of this active learning technique.
A plot will appear showing the top 5 most uncertain digits for each iteration of training. These may or may not contain mistakes, but we will train the next model with their true labels.

Out:
Iteration 0 ______________________________________________________________________
Label Spreading model: 10 labeled & 320 unlabeled (330 total)
precision recall f1-score support
0 0.00 0.00 0.00 24
1 0.51 0.86 0.64 29
2 0.83 0.97 0.90 31
3 0.00 0.00 0.00 28
4 0.00 0.00 0.00 27
5 0.85 0.49 0.62 35
6 0.84 0.95 0.89 40
7 0.70 0.92 0.80 36
8 0.57 0.76 0.65 33
9 0.41 0.86 0.55 37
avg / total 0.51 0.62 0.54 320
Confusion matrix
[[25 3 0 0 0 0 1]
[ 1 30 0 0 0 0 0]
[ 0 0 17 7 0 1 10]
[ 2 0 0 38 0 0 0]
[ 0 3 0 0 33 0 0]
[ 8 0 0 0 0 25 0]
[ 0 0 3 0 0 2 32]]
Iteration 1 ______________________________________________________________________
Label Spreading model: 15 labeled & 315 unlabeled (330 total)
precision recall f1-score support
0 0.00 0.00 0.00 24
1 0.51 0.75 0.61 28
2 0.91 0.97 0.94 31
3 0.00 0.00 0.00 28
4 0.00 0.00 0.00 27
5 0.84 0.97 0.90 33
6 1.00 0.95 0.97 40
7 0.75 0.92 0.83 36
8 0.46 0.81 0.59 31
9 0.43 0.78 0.56 37
avg / total 0.53 0.66 0.58 315
Confusion matrix
[[21 0 0 0 0 6 1]
[ 1 30 0 0 0 0 0]
[ 0 0 32 0 0 0 1]
[ 2 0 0 38 0 0 0]
[ 0 3 0 0 33 0 0]
[ 6 0 0 0 0 25 0]
[ 0 0 6 0 0 2 29]]
Iteration 2 ______________________________________________________________________
Label Spreading model: 20 labeled & 310 unlabeled (330 total)
precision recall f1-score support
0 1.00 1.00 1.00 22
1 0.67 0.71 0.69 28
2 0.94 0.97 0.95 31
3 0.00 0.00 0.00 28
4 0.85 0.92 0.88 24
5 0.89 0.97 0.93 33
6 1.00 0.95 0.97 40
7 1.00 0.92 0.96 36
8 0.50 0.81 0.62 31
9 0.67 0.78 0.72 37
avg / total 0.76 0.81 0.78 310
Confusion matrix
[[22 0 0 0 0 0 0 0 0]
[ 0 20 0 1 0 0 0 6 1]
[ 0 1 30 0 0 0 0 0 0]
[ 0 1 0 22 0 0 0 1 0]
[ 0 0 0 0 32 0 0 0 1]
[ 0 2 0 0 0 38 0 0 0]
[ 0 0 2 1 0 0 33 0 0]
[ 0 6 0 0 0 0 0 25 0]
[ 0 0 0 2 4 0 0 2 29]]
Iteration 3 ______________________________________________________________________
Label Spreading model: 25 labeled & 305 unlabeled (330 total)
precision recall f1-score support
0 1.00 1.00 1.00 22
1 0.68 0.85 0.75 27
2 1.00 0.90 0.95 31
3 1.00 0.77 0.87 26
4 1.00 0.92 0.96 24
5 0.89 0.97 0.93 33
6 1.00 0.97 0.99 39
7 0.95 1.00 0.97 35
8 0.66 0.81 0.72 31
9 0.97 0.78 0.87 37
avg / total 0.91 0.90 0.90 305
Confusion matrix
[[22 0 0 0 0 0 0 0 0 0]
[ 0 23 0 0 0 0 0 0 4 0]
[ 0 1 28 0 0 0 0 2 0 0]
[ 0 0 0 20 0 0 0 0 6 0]
[ 0 1 0 0 22 0 0 0 1 0]
[ 0 0 0 0 0 32 0 0 0 1]
[ 0 1 0 0 0 0 38 0 0 0]
[ 0 0 0 0 0 0 0 35 0 0]
[ 0 6 0 0 0 0 0 0 25 0]
[ 0 2 0 0 0 4 0 0 2 29]]
Iteration 4 ______________________________________________________________________
Label Spreading model: 30 labeled & 300 unlabeled (330 total)
precision recall f1-score support
0 1.00 1.00 1.00 22
1 0.68 0.85 0.75 27
2 1.00 0.87 0.93 31
3 0.92 1.00 0.96 23
4 1.00 0.92 0.96 24
5 0.97 0.94 0.95 33
6 1.00 0.97 0.99 39
7 0.95 1.00 0.97 35
8 0.81 0.81 0.81 31
9 0.94 0.86 0.90 35
avg / total 0.93 0.92 0.92 300
Confusion matrix
[[22 0 0 0 0 0 0 0 0 0]
[ 0 23 0 0 0 0 0 0 4 0]
[ 0 1 27 1 0 0 0 2 0 0]
[ 0 0 0 23 0 0 0 0 0 0]
[ 0 1 0 0 22 0 0 0 1 0]
[ 0 0 0 0 0 31 0 0 0 2]
[ 0 1 0 0 0 0 38 0 0 0]
[ 0 0 0 0 0 0 0 35 0 0]
[ 0 6 0 0 0 0 0 0 25 0]
[ 0 2 0 1 0 1 0 0 1 30]]
print(__doc__)
# Authors: Clay Woolam <clay@woolam.org>
# License: BSD
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
from sklearn import datasets
from sklearn.semi_supervised import label_propagation
from sklearn.metrics import classification_report, confusion_matrix
digits = datasets.load_digits()
rng = np.random.RandomState(0)
indices = np.arange(len(digits.data))
rng.shuffle(indices)
X = digits.data[indices[:330]]
y = digits.target[indices[:330]]
images = digits.images[indices[:330]]
n_total_samples = len(y)
n_labeled_points = 10
max_iterations = 5
unlabeled_indices = np.arange(n_total_samples)[n_labeled_points:]
f = plt.figure()
for i in range(max_iterations):
if len(unlabeled_indices) == 0:
print("No unlabeled items left to label.")
break
y_train = np.copy(y)
y_train[unlabeled_indices] = -1
lp_model = label_propagation.LabelSpreading(gamma=0.25, max_iter=5)
lp_model.fit(X, y_train)
predicted_labels = lp_model.transduction_[unlabeled_indices]
true_labels = y[unlabeled_indices]
cm = confusion_matrix(true_labels, predicted_labels,
labels=lp_model.classes_)
print("Iteration %i %s" % (i, 70 * "_"))
print("Label Spreading model: %d labeled & %d unlabeled (%d total)"
% (n_labeled_points, n_total_samples - n_labeled_points,
n_total_samples))
print(classification_report(true_labels, predicted_labels))
print("Confusion matrix")
print(cm)
# compute the entropies of transduced label distributions
pred_entropies = stats.distributions.entropy(
lp_model.label_distributions_.T)
# select up to 5 digit examples that the classifier is most uncertain about
uncertainty_index = np.argsort(pred_entropies)[::-1]
uncertainty_index = uncertainty_index[
np.in1d(uncertainty_index, unlabeled_indices)][:5]
# keep track of indices that we get labels for
delete_indices = np.array([])
# for more than 5 iterations, visualize the gain only on the first 5
if i < 5:
f.text(.05, (1 - (i + 1) * .183),
"model %d\n\nfit with\n%d labels" %
((i + 1), i * 5 + 10), size=10)
for index, image_index in enumerate(uncertainty_index):
image = images[image_index]
# for more than 5 iterations, visualize the gain only on the first 5
if i < 5:
sub = f.add_subplot(5, 5, index + 1 + (5 * i))
sub.imshow(image, cmap=plt.cm.gray_r, interpolation='none')
sub.set_title("predict: %i\ntrue: %i" % (
lp_model.transduction_[image_index], y[image_index]), size=10)
sub.axis('off')
# labeling 5 points, remote from labeled set
delete_index, = np.where(unlabeled_indices == image_index)
delete_indices = np.concatenate((delete_indices, delete_index))
unlabeled_indices = np.delete(unlabeled_indices, delete_indices)
n_labeled_points += len(uncertainty_index)
f.suptitle("Active learning with Label Propagation.\nRows show 5 most "
"uncertain labels to learn with the next model.", y=1.15)
plt.subplots_adjust(left=0.2, bottom=0.03, right=0.9, top=0.9, wspace=0.2,
hspace=0.85)
plt.show()
Total running time of the script: ( 0 minutes 0.778 seconds)