4.8. Transforming the prediction target (`y`)¶

4.8.1. Label binarization¶

`LabelBinarizer` is a utility class to help create a label indicator matrix from a list of multi-class labels:

```>>> from sklearn import preprocessing
>>> lb = preprocessing.LabelBinarizer()
>>> lb.fit([1, 2, 6, 4, 2])
LabelBinarizer(neg_label=0, pos_label=1, sparse_output=False)
>>> lb.classes_
array([1, 2, 4, 6])
>>> lb.transform([1, 6])
array([[1, 0, 0, 0],
[0, 0, 0, 1]])
```

For multiple labels per instance, use `MultiLabelBinarizer`:

```>>> lb = preprocessing.MultiLabelBinarizer()
>>> lb.fit_transform([(1, 2), (3,)])
array([[1, 1, 0],
[0, 0, 1]])
>>> lb.classes_
array([1, 2, 3])
```

4.8.2. Label encoding¶

`LabelEncoder` is a utility class to help normalize labels such that they contain only values between 0 and n_classes-1. This is sometimes useful for writing efficient Cython routines. `LabelEncoder` can be used as follows:

```>>> from sklearn import preprocessing
>>> le = preprocessing.LabelEncoder()
>>> le.fit([1, 2, 2, 6])
LabelEncoder()
>>> le.classes_
array([1, 2, 6])
>>> le.transform([1, 1, 2, 6])
array([0, 0, 1, 2])
>>> le.inverse_transform([0, 0, 1, 2])
array([1, 1, 2, 6])
```

It can also be used to transform non-numerical labels (as long as they are hashable and comparable) to numerical labels:

```>>> le = preprocessing.LabelEncoder()
>>> le.fit(["paris", "paris", "tokyo", "amsterdam"])
LabelEncoder()
>>> list(le.classes_)
['amsterdam', 'paris', 'tokyo']
>>> le.transform(["tokyo", "tokyo", "paris"])
array([2, 2, 1])
>>> list(le.inverse_transform([2, 2, 1]))
['tokyo', 'tokyo', 'paris']
```