.. currentmodule:: sklearn.preprocessing .. _preprocessing_targets: ========================================== Transforming the prediction target (``y``) ========================================== Label binarization ------------------ :class:`LabelBinarizer` is a utility class to help create a label indicator matrix from a list of multi-class labels:: >>> from sklearn import preprocessing >>> lb = preprocessing.LabelBinarizer() >>> lb.fit([1, 2, 6, 4, 2]) LabelBinarizer(neg_label=0, pos_label=1, sparse_output=False) >>> lb.classes_ array([1, 2, 4, 6]) >>> lb.transform([1, 6]) array([[1, 0, 0, 0], [0, 0, 0, 1]]) For multiple labels per instance, use :class:`MultiLabelBinarizer`:: >>> lb = preprocessing.MultiLabelBinarizer() >>> lb.fit_transform([(1, 2), (3,)]) array([[1, 1, 0], [0, 0, 1]]) >>> lb.classes_ array([1, 2, 3]) Label encoding -------------- :class:`LabelEncoder` is a utility class to help normalize labels such that they contain only values between 0 and n_classes-1. This is sometimes useful for writing efficient Cython routines. :class:`LabelEncoder` can be used as follows:: >>> from sklearn import preprocessing >>> le = preprocessing.LabelEncoder() >>> le.fit([1, 2, 2, 6]) LabelEncoder() >>> le.classes_ array([1, 2, 6]) >>> le.transform([1, 1, 2, 6]) array([0, 0, 1, 2]) >>> le.inverse_transform([0, 0, 1, 2]) array([1, 1, 2, 6]) It can also be used to transform non-numerical labels (as long as they are hashable and comparable) to numerical labels:: >>> le = preprocessing.LabelEncoder() >>> le.fit(["paris", "paris", "tokyo", "amsterdam"]) LabelEncoder() >>> list(le.classes_) ['amsterdam', 'paris', 'tokyo'] >>> le.transform(["tokyo", "tokyo", "paris"]) array([2, 2, 1]) >>> list(le.inverse_transform([2, 2, 1])) ['tokyo', 'tokyo', 'paris']