sklearn.datasets.make_swiss_roll¶
- 
sklearn.datasets.make_swiss_roll(n_samples=100, noise=0.0, random_state=None)[source]¶
- Generate a swiss roll dataset. - Read more in the User Guide. - Parameters: - n_samples : int, optional (default=100) - The number of sample points on the S curve. - noise : float, optional (default=0.0) - The standard deviation of the gaussian noise. - random_state : int, RandomState instance or None, optional (default=None) - If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random. - Returns: - X : array of shape [n_samples, 3] - The points. - t : array of shape [n_samples] - The univariate position of the sample according to the main dimension of the points in the manifold. - Notes - The algorithm is from Marsland [1]. - References - [R146] - S. Marsland, “Machine Learning: An Algorithmic Perspective”, Chapter 10, 2009. http://seat.massey.ac.nz/personal/s.r.marsland/Code/10/lle.py 
 
         
 
