sklearn.linear_model.MultiTaskLasso¶
- class sklearn.linear_model.MultiTaskLasso(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=1000, tol=0.0001, warm_start=False)¶
Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer
The optimization objective for Lasso is:
(1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21
Where:
||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}
i.e. the sum of norm of earch row.
Parameters: alpha : float, optional
Constant that multiplies the L1/L2 term. Defaults to 1.0
fit_intercept : boolean
whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered).
normalize : boolean, optional, default False
If True, the regressors X will be normalized before regression.
copy_X : boolean, optional, default True
If True, X will be copied; else, it may be overwritten.
max_iter : int, optional
The maximum number of iterations
tol : float, optional
The tolerance for the optimization: if the updates are smaller than tol, the optimization code checks the dual gap for optimality and continues until it is smaller than tol.
warm_start : bool, optional
When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution.
Attributes: ``coef_`` : array, shape = (n_tasks, n_features)
parameter vector (W in the cost function formula)
``intercept_`` : array, shape = (n_tasks,)
independent term in decision function.
See also
Notes
The algorithm used to fit the model is coordinate descent.
To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array.
Examples
>>> from sklearn import linear_model >>> clf = linear_model.MultiTaskLasso(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [[0, 0], [1, 1], [2, 2]]) MultiTaskLasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000, normalize=False, tol=0.0001, warm_start=False) >>> print(clf.coef_) [[ 0.89393398 0. ] [ 0.89393398 0. ]] >>> print(clf.intercept_) [ 0.10606602 0.10606602]
Methods
decision_function(X) Decision function of the linear model fit(X, y) Fit MultiTaskLasso model with coordinate descent get_params([deep]) Get parameters for this estimator. path(X, y[, l1_ratio, eps, n_alphas, ...]) Compute elastic net path with coordinate descent predict(X) Predict using the linear model score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction. set_params(**params) Set the parameters of this estimator. - __init__(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=1000, tol=0.0001, warm_start=False)¶
- decision_function(X)¶
Decision function of the linear model
Parameters: X : numpy array or scipy.sparse matrix of shape (n_samples, n_features)
Returns: T : array, shape = (n_samples,)
The predicted decision function
- fit(X, y)¶
Fit MultiTaskLasso model with coordinate descent
Parameters: X : ndarray, shape = (n_samples, n_features)
Data
y : ndarray, shape = (n_samples, n_tasks)
Target
Notes
Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically convert the X input as a Fortran-contiguous numpy array if necessary.
To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format.
- get_params(deep=True)¶
Get parameters for this estimator.
Parameters: deep: boolean, optional :
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: params : mapping of string to any
Parameter names mapped to their values.
- static path(X, y, l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, precompute='auto', Xy=None, fit_intercept=True, normalize=False, copy_X=True, coef_init=None, verbose=False, return_models=False, **params)¶
Compute elastic net path with coordinate descent
The elastic net optimization function varies for mono and multi-outputs.
For mono-output tasks it is:
1 / (2 * n_samples) * ||y - Xw||^2_2 + + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2
For multi-output tasks it is:
(1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * l1_ratio * ||W||_21 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2
Where:
||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}
i.e. the sum of norm of each row.
Parameters: X : {array-like}, shape (n_samples, n_features)
Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication. If y is mono-output then X can be sparse.
y : ndarray, shape = (n_samples,) or (n_samples, n_outputs)
Target values
l1_ratio : float, optional
float between 0 and 1 passed to elastic net (scaling between l1 and l2 penalties). l1_ratio=1 corresponds to the Lasso
eps : float
Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3
n_alphas : int, optional
Number of alphas along the regularization path
alphas : ndarray, optional
List of alphas where to compute the models. If None alphas are set automatically
precompute : True | False | ‘auto’ | array-like
Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto' let us decide. The Gram matrix can also be passed as argument.
Xy : array-like, optional
Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed.
fit_intercept : bool
Fit or not an intercept. WARNING : deprecated, will be removed in 0.16.
normalize : boolean, optional, default False
If True, the regressors X will be normalized before regression. WARNING : deprecated, will be removed in 0.16.
copy_X : boolean, optional, default True
If True, X will be copied; else, it may be overwritten.
coef_init : array, shape (n_features, ) | None
The initial values of the coefficients.
verbose : bool or integer
Amount of verbosity.
return_models : boolean, optional, default False
If True, the function will return list of models. Setting it to False will change the function output returning the values of the alphas and the coefficients along the path. Returning the model list will be removed in version 0.16.
params : kwargs
keyword arguments passed to the coordinate descent solver.
Returns: models : a list of models along the regularization path
(Is returned if return_models is set True (default).
alphas : array, shape (n_alphas,)
The alphas along the path where models are computed. (Is returned, along with coefs, when return_models is set to False)
coefs : array, shape (n_features, n_alphas) or
(n_outputs, n_features, n_alphas)
Coefficients along the path. (Is returned, along with alphas, when return_models is set to False).
dual_gaps : array, shape (n_alphas,)
The dual gaps at the end of the optimization for each alpha. (Is returned, along with alphas, when return_models is set to False).
Notes
See examples/plot_lasso_coordinate_descent_path.py for an example.
Deprecation Notice: Setting return_models to False will make the Lasso Path return an output in the style used by lars_path. This will be become the norm as of version 0.15. Leaving return_models set to True will let the function return a list of models as before.
- predict(X)¶
Predict using the linear model
Parameters: X : {array-like, sparse matrix}, shape = (n_samples, n_features)
Samples.
Returns: C : array, shape = (n_samples,)
Returns predicted values.
- score(X, y, sample_weight=None)¶
Returns the coefficient of determination R^2 of the prediction.
The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0, lower values are worse.
Parameters: X : array-like, shape = (n_samples, n_features)
Test samples.
y : array-like, shape = (n_samples,)
True values for X.
sample_weight : array-like, shape = [n_samples], optional
Sample weights.
Returns: score : float
R^2 of self.predict(X) wrt. y.
- set_params(**params)¶
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.
Returns: self :
- sparse_coef_¶
sparse representation of the fitted coef