sklearn.base.RegressorMixin¶
- class sklearn.base.RegressorMixin¶
Mixin class for all regression estimators in scikit-learn.
Methods
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction. - __init__()¶
x.__init__(...) initializes x; see help(type(x)) for signature
- score(X, y, sample_weight=None)¶
Returns the coefficient of determination R^2 of the prediction.
The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0, lower values are worse.
Parameters: X : array-like, shape = (n_samples, n_features)
Test samples.
y : array-like, shape = (n_samples,)
True values for X.
sample_weight : array-like, shape = [n_samples], optional
Sample weights.
Returns: score : float
R^2 of self.predict(X) wrt. y.