Image denoising using dictionary learningΒΆ

An example comparing the effect of reconstructing noisy fragments of a raccoon face image using firstly online Dictionary Learning and various transform methods.

The dictionary is fitted on the distorted left half of the image, and subsequently used to reconstruct the right half. Note that even better performance could be achieved by fitting to an undistorted (i.e. noiseless) image, but here we start from the assumption that it is not available.

A common practice for evaluating the results of image denoising is by looking at the difference between the reconstruction and the original image. If the reconstruction is perfect this will look like Gaussian noise.

It can be seen from the plots that the results of Orthogonal Matching Pursuit (OMP) with two non-zero coefficients is a bit less biased than when keeping only one (the edges look less prominent). It is in addition closer from the ground truth in Frobenius norm.

The result of Least Angle Regression is much more strongly biased: the difference is reminiscent of the local intensity value of the original image.

Thresholding is clearly not useful for denoising, but it is here to show that it can produce a suggestive output with very high speed, and thus be useful for other tasks such as object classification, where performance is not necessarily related to visualisation.


from time import time

import matplotlib.pyplot as plt
import numpy as np
import scipy as sp

from sklearn.decomposition import MiniBatchDictionaryLearning
from sklearn.feature_extraction.image import extract_patches_2d
from sklearn.feature_extraction.image import reconstruct_from_patches_2d
from sklearn.utils.testing import SkipTest
from sklearn.utils.fixes import sp_version

if sp_version < (0, 12):
    raise SkipTest("Skipping because SciPy version earlier than 0.12.0 and "
                   "thus does not include the scipy.misc.face() image.")
    from scipy import misc
    face = misc.face(gray=True)
except AttributeError:
    # Old versions of scipy have face in the top level package
    face = sp.face(gray=True)

# Convert from uint8 representation with values between 0 and 255 to
# a floating point representation with values between 0 and 1.
face = face / 255

# downsample for higher speed
face = face[::2, ::2] + face[1::2, ::2] + face[::2, 1::2] + face[1::2, 1::2]
face /= 4.0
height, width = face.shape

# Distort the right half of the image
print('Distorting image...')
distorted = face.copy()
distorted[:, width // 2:] += 0.075 * np.random.randn(height, width // 2)

# Extract all reference patches from the left half of the image
print('Extracting reference patches...')
t0 = time()
patch_size = (7, 7)
data = extract_patches_2d(distorted[:, :width // 2], patch_size)
data = data.reshape(data.shape[0], -1)
data -= np.mean(data, axis=0)
data /= np.std(data, axis=0)
print('done in %.2fs.' % (time() - t0))


Distorting image...
Extracting reference patches...
done in 0.06s.

Learn the dictionary from reference patches

print('Learning the dictionary...')
t0 = time()
dico = MiniBatchDictionaryLearning(n_components=100, alpha=1, n_iter=500)
V =
dt = time() - t0
print('done in %.2fs.' % dt)

plt.figure(figsize=(4.2, 4))
for i, comp in enumerate(V[:100]):
    plt.subplot(10, 10, i + 1)
plt.suptitle('Dictionary learned from face patches\n' +
             'Train time %.1fs on %d patches' % (dt, len(data)),
plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23)


Learning the dictionary...
done in 8.37s.

Display the distorted image

def show_with_diff(image, reference, title):
    """Helper function to display denoising"""
    plt.figure(figsize=(5, 3.3))
    plt.subplot(1, 2, 1)
    plt.imshow(image, vmin=0, vmax=1,,
    plt.subplot(1, 2, 2)
    difference = image - reference

    plt.title('Difference (norm: %.2f)' % np.sqrt(np.sum(difference ** 2)))
    plt.imshow(difference, vmin=-0.5, vmax=0.5,,
    plt.suptitle(title, size=16)
    plt.subplots_adjust(0.02, 0.02, 0.98, 0.79, 0.02, 0.2)

show_with_diff(distorted, face, 'Distorted image')

Extract noisy patches and reconstruct them using the dictionary

print('Extracting noisy patches... ')
t0 = time()
data = extract_patches_2d(distorted[:, width // 2:], patch_size)
data = data.reshape(data.shape[0], -1)
intercept = np.mean(data, axis=0)
data -= intercept
print('done in %.2fs.' % (time() - t0))

transform_algorithms = [
    ('Orthogonal Matching Pursuit\n1 atom', 'omp',
     {'transform_n_nonzero_coefs': 1}),
    ('Orthogonal Matching Pursuit\n2 atoms', 'omp',
     {'transform_n_nonzero_coefs': 2}),
    ('Least-angle regression\n5 atoms', 'lars',
     {'transform_n_nonzero_coefs': 5}),
    ('Thresholding\n alpha=0.1', 'threshold', {'transform_alpha': .1})]

reconstructions = {}
for title, transform_algorithm, kwargs in transform_algorithms:
    print(title + '...')
    reconstructions[title] = face.copy()
    t0 = time()
    dico.set_params(transform_algorithm=transform_algorithm, **kwargs)
    code = dico.transform(data)
    patches =, V)

    patches += intercept
    patches = patches.reshape(len(data), *patch_size)
    if transform_algorithm == 'threshold':
        patches -= patches.min()
        patches /= patches.max()
    reconstructions[title][:, width // 2:] = reconstruct_from_patches_2d(
        patches, (height, width // 2))
    dt = time() - t0
    print('done in %.2fs.' % dt)
    show_with_diff(reconstructions[title], face,
                   title + ' (time: %.1fs)' % dt)
  • ../../_images/sphx_glr_plot_image_denoising_003.png
  • ../../_images/sphx_glr_plot_image_denoising_004.png
  • ../../_images/sphx_glr_plot_image_denoising_005.png
  • ../../_images/sphx_glr_plot_image_denoising_006.png


Extracting noisy patches...
done in 0.03s.
Orthogonal Matching Pursuit
1 atom...
done in 10.46s.
Orthogonal Matching Pursuit
2 atoms...
done in 21.23s.
Least-angle regression
5 atoms...
done in 103.24s.
done in 0.95s.

Total running time of the script: ( 2 minutes 32.005 seconds)

Generated by Sphinx-Gallery