sklearn.utils
.gen_even_slices¶
- sklearn.utils.gen_even_slices(n, n_packs, *, n_samples=None)[source]¶
Generator to create
n_packs
evenly spaced slices going up ton
.If
n_packs
does not dividen
, except for the firstn % n_packs
slices, remaining slices may contain fewer elements.- Parameters:
- nint
Size of the sequence.
- n_packsint
Number of slices to generate.
- n_samplesint, default=None
Number of samples. Pass
n_samples
when the slices are to be used for sparse matrix indexing; slicing off-the-end raises an exception, while it works for NumPy arrays.
- Yields:
slice
representing a set of indices from 0 to n.
See also
gen_batches
Generator to create slices containing batch_size elements from 0 to n.
Examples
>>> from sklearn.utils import gen_even_slices >>> list(gen_even_slices(10, 1)) [slice(0, 10, None)] >>> list(gen_even_slices(10, 10)) [slice(0, 1, None), slice(1, 2, None), ..., slice(9, 10, None)] >>> list(gen_even_slices(10, 5)) [slice(0, 2, None), slice(2, 4, None), ..., slice(8, 10, None)] >>> list(gen_even_slices(10, 3)) [slice(0, 4, None), slice(4, 7, None), slice(7, 10, None)]
Examples using sklearn.utils.gen_even_slices
¶
Poisson regression and non-normal loss
Poisson regression and non-normal loss