sklearn.utils.discovery.all_estimators

sklearn.utils.discovery.all_estimators(type_filter=None)[source]

Get a list of all estimators from sklearn.

This function crawls the module and gets all classes that inherit from BaseEstimator. Classes that are defined in test-modules are not included.

Parameters:
type_filter{“classifier”, “regressor”, “cluster”, “transformer”} or list of such str, default=None

Which kind of estimators should be returned. If None, no filter is applied and all estimators are returned. Possible values are ‘classifier’, ‘regressor’, ‘cluster’ and ‘transformer’ to get estimators only of these specific types, or a list of these to get the estimators that fit at least one of the types.

Returns:
estimatorslist of tuples

List of (name, class), where name is the class name as string and class is the actual type of the class.

Examples

>>> from sklearn.utils.discovery import all_estimators
>>> estimators = all_estimators()
>>> type(estimators)
<class 'list'>
>>> type(estimators[0])
<class 'tuple'>
>>> estimators[:2]
[('ARDRegression', <class 'sklearn.linear_model._bayes.ARDRegression'>),
 ('AdaBoostClassifier',
  <class 'sklearn.ensemble._weight_boosting.AdaBoostClassifier'>)]
>>> classifiers = all_estimators(type_filter="classifier")
>>> classifiers[:2]
[('AdaBoostClassifier',
  <class 'sklearn.ensemble._weight_boosting.AdaBoostClassifier'>),
 ('BaggingClassifier', <class 'sklearn.ensemble._bagging.BaggingClassifier'>)]
>>> regressors = all_estimators(type_filter="regressor")
>>> regressors[:2]
[('ARDRegression', <class 'sklearn.linear_model._bayes.ARDRegression'>),
 ('AdaBoostRegressor',
  <class 'sklearn.ensemble._weight_boosting.AdaBoostRegressor'>)]
>>> both = all_estimators(type_filter=["classifier", "regressor"])
>>> both[:2]
[('ARDRegression', <class 'sklearn.linear_model._bayes.ARDRegression'>),
 ('AdaBoostClassifier',
  <class 'sklearn.ensemble._weight_boosting.AdaBoostClassifier'>)]