sklearn.utils.discovery
.all_estimators¶
- sklearn.utils.discovery.all_estimators(type_filter=None)[source]¶
Get a list of all estimators from
sklearn
.This function crawls the module and gets all classes that inherit from BaseEstimator. Classes that are defined in test-modules are not included.
- Parameters:
- type_filter{“classifier”, “regressor”, “cluster”, “transformer”} or list of such str, default=None
Which kind of estimators should be returned. If None, no filter is applied and all estimators are returned. Possible values are ‘classifier’, ‘regressor’, ‘cluster’ and ‘transformer’ to get estimators only of these specific types, or a list of these to get the estimators that fit at least one of the types.
- Returns:
- estimatorslist of tuples
List of (name, class), where
name
is the class name as string andclass
is the actual type of the class.
Examples
>>> from sklearn.utils.discovery import all_estimators >>> estimators = all_estimators() >>> type(estimators) <class 'list'> >>> type(estimators[0]) <class 'tuple'> >>> estimators[:2] [('ARDRegression', <class 'sklearn.linear_model._bayes.ARDRegression'>), ('AdaBoostClassifier', <class 'sklearn.ensemble._weight_boosting.AdaBoostClassifier'>)] >>> classifiers = all_estimators(type_filter="classifier") >>> classifiers[:2] [('AdaBoostClassifier', <class 'sklearn.ensemble._weight_boosting.AdaBoostClassifier'>), ('BaggingClassifier', <class 'sklearn.ensemble._bagging.BaggingClassifier'>)] >>> regressors = all_estimators(type_filter="regressor") >>> regressors[:2] [('ARDRegression', <class 'sklearn.linear_model._bayes.ARDRegression'>), ('AdaBoostRegressor', <class 'sklearn.ensemble._weight_boosting.AdaBoostRegressor'>)] >>> both = all_estimators(type_filter=["classifier", "regressor"]) >>> both[:2] [('ARDRegression', <class 'sklearn.linear_model._bayes.ARDRegression'>), ('AdaBoostClassifier', <class 'sklearn.ensemble._weight_boosting.AdaBoostClassifier'>)]