sklearn.preprocessing
.LabelEncoder¶
- class sklearn.preprocessing.LabelEncoder[source]¶
Encode target labels with value between 0 and n_classes-1.
This transformer should be used to encode target values, i.e.
y
, and not the inputX
.Read more in the User Guide.
New in version 0.12.
- Attributes:
- classes_ndarray of shape (n_classes,)
Holds the label for each class.
See also
OrdinalEncoder
Encode categorical features using an ordinal encoding scheme.
OneHotEncoder
Encode categorical features as a one-hot numeric array.
Examples
LabelEncoder
can be used to normalize labels.>>> from sklearn.preprocessing import LabelEncoder >>> le = LabelEncoder() >>> le.fit([1, 2, 2, 6]) LabelEncoder() >>> le.classes_ array([1, 2, 6]) >>> le.transform([1, 1, 2, 6]) array([0, 0, 1, 2]...) >>> le.inverse_transform([0, 0, 1, 2]) array([1, 1, 2, 6])
It can also be used to transform non-numerical labels (as long as they are hashable and comparable) to numerical labels.
>>> le = LabelEncoder() >>> le.fit(["paris", "paris", "tokyo", "amsterdam"]) LabelEncoder() >>> list(le.classes_) ['amsterdam', 'paris', 'tokyo'] >>> le.transform(["tokyo", "tokyo", "paris"]) array([2, 2, 1]...) >>> list(le.inverse_transform([2, 2, 1])) ['tokyo', 'tokyo', 'paris']
Methods
fit
(y)Fit label encoder.
Fit label encoder and return encoded labels.
Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
Transform labels back to original encoding.
set_output
(*[, transform])Set output container.
set_params
(**params)Set the parameters of this estimator.
transform
(y)Transform labels to normalized encoding.
- fit(y)[source]¶
Fit label encoder.
- Parameters:
- yarray-like of shape (n_samples,)
Target values.
- Returns:
- selfreturns an instance of self.
Fitted label encoder.
- fit_transform(y)[source]¶
Fit label encoder and return encoded labels.
- Parameters:
- yarray-like of shape (n_samples,)
Target values.
- Returns:
- yarray-like of shape (n_samples,)
Encoded labels.
- get_metadata_routing()[source]¶
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- get_params(deep=True)[source]¶
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- inverse_transform(y)[source]¶
Transform labels back to original encoding.
- Parameters:
- yndarray of shape (n_samples,)
Target values.
- Returns:
- yndarray of shape (n_samples,)
Original encoding.
- set_output(*, transform=None)[source]¶
Set output container.
See Introducing the set_output API for an example on how to use the API.
- Parameters:
- transform{“default”, “pandas”}, default=None
Configure output of
transform
andfit_transform
."default"
: Default output format of a transformer"pandas"
: DataFrame output"polars"
: Polars outputNone
: Transform configuration is unchanged
New in version 1.4:
"polars"
option was added.
- Returns:
- selfestimator instance
Estimator instance.
- set_params(**params)[source]¶
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.