sklearn.model_selection
.LeaveOneGroupOut¶
- class sklearn.model_selection.LeaveOneGroupOut[source]¶
Leave One Group Out cross-validator.
Provides train/test indices to split data such that each training set is comprised of all samples except ones belonging to one specific group. Arbitrary domain specific group information is provided an array integers that encodes the group of each sample.
For instance the groups could be the year of collection of the samples and thus allow for cross-validation against time-based splits.
Read more in the User Guide.
See also
GroupKFold
K-fold iterator variant with non-overlapping groups.
Notes
Splits are ordered according to the index of the group left out. The first split has testing set consisting of the group whose index in
groups
is lowest, and so on.Examples
>>> import numpy as np >>> from sklearn.model_selection import LeaveOneGroupOut >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 1, 2]) >>> groups = np.array([1, 1, 2, 2]) >>> logo = LeaveOneGroupOut() >>> logo.get_n_splits(X, y, groups) 2 >>> logo.get_n_splits(groups=groups) # 'groups' is always required 2 >>> print(logo) LeaveOneGroupOut() >>> for i, (train_index, test_index) in enumerate(logo.split(X, y, groups)): ... print(f"Fold {i}:") ... print(f" Train: index={train_index}, group={groups[train_index]}") ... print(f" Test: index={test_index}, group={groups[test_index]}") Fold 0: Train: index=[2 3], group=[2 2] Test: index=[0 1], group=[1 1] Fold 1: Train: index=[0 1], group=[1 1] Test: index=[2 3], group=[2 2]
Methods
Get metadata routing of this object.
get_n_splits
([X, y, groups])Returns the number of splitting iterations in the cross-validator.
set_split_request
(*[, groups])Request metadata passed to the
split
method.split
(X[, y, groups])Generate indices to split data into training and test set.
- get_metadata_routing()[source]¶
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- get_n_splits(X=None, y=None, groups=None)[source]¶
Returns the number of splitting iterations in the cross-validator.
- Parameters:
- Xobject
Always ignored, exists for compatibility.
- yobject
Always ignored, exists for compatibility.
- groupsarray-like of shape (n_samples,)
Group labels for the samples used while splitting the dataset into train/test set. This ‘groups’ parameter must always be specified to calculate the number of splits, though the other parameters can be omitted.
- Returns:
- n_splitsint
Returns the number of splitting iterations in the cross-validator.
- set_split_request(*, groups: bool | None | str = '$UNCHANGED$') LeaveOneGroupOut [source]¶
Request metadata passed to the
split
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tosplit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tosplit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- groupsstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
groups
parameter insplit
.
- Returns:
- selfobject
The updated object.
- split(X, y=None, groups=None)[source]¶
Generate indices to split data into training and test set.
- Parameters:
- Xarray-like of shape (n_samples, n_features)
Training data, where
n_samples
is the number of samples andn_features
is the number of features.- yarray-like of shape (n_samples,), default=None
The target variable for supervised learning problems.
- groupsarray-like of shape (n_samples,)
Group labels for the samples used while splitting the dataset into train/test set.
- Yields:
- trainndarray
The training set indices for that split.
- testndarray
The testing set indices for that split.