Note
Go to the end to download the full example code or to run this example in your browser via JupyterLite or Binder
Non-linear SVM¶
Perform binary classification using non-linear SVC with RBF kernel. The target to predict is a XOR of the inputs.
The color map illustrates the decision function learned by the SVC.
import matplotlib.pyplot as plt
import numpy as np
from sklearn import svm
xx, yy = np.meshgrid(np.linspace(-3, 3, 500), np.linspace(-3, 3, 500))
np.random.seed(0)
X = np.random.randn(300, 2)
Y = np.logical_xor(X[:, 0] > 0, X[:, 1] > 0)
# fit the model
clf = svm.NuSVC(gamma="auto")
clf.fit(X, Y)
# plot the decision function for each datapoint on the grid
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.imshow(
Z,
interpolation="nearest",
extent=(xx.min(), xx.max(), yy.min(), yy.max()),
aspect="auto",
origin="lower",
cmap=plt.cm.PuOr_r,
)
contours = plt.contour(xx, yy, Z, levels=[0], linewidths=2, linestyles="dashed")
plt.scatter(X[:, 0], X[:, 1], s=30, c=Y, cmap=plt.cm.Paired, edgecolors="k")
plt.xticks(())
plt.yticks(())
plt.axis([-3, 3, -3, 3])
plt.show()
Total running time of the script: (0 minutes 1.436 seconds)
Related examples
Illustration of Gaussian process classification (GPC) on the XOR dataset
Illustration of Gaussian process classification (GPC) on the XOR dataset
SGD: Weighted samples
SVM Exercise
SVM: Weighted samples
Varying regularization in Multi-layer Perceptron
Varying regularization in Multi-layer Perceptron