Face completion with a multi-output estimators

This example shows the use of multi-output estimator to complete images. The goal is to predict the lower half of a face given its upper half.

The first column of images shows true faces. The next columns illustrate how extremely randomized trees, k nearest neighbors, linear regression and ridge regression complete the lower half of those faces.

Face completion with multi-output estimators, true faces, Extra trees, K-nn, Linear regression, Ridge
import matplotlib.pyplot as plt
import numpy as np

from sklearn.datasets import fetch_olivetti_faces
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.linear_model import LinearRegression, RidgeCV
from sklearn.neighbors import KNeighborsRegressor
from sklearn.utils.validation import check_random_state

# Load the faces datasets
data, targets = fetch_olivetti_faces(return_X_y=True)

train = data[targets < 30]
test = data[targets >= 30]  # Test on independent people

# Test on a subset of people
n_faces = 5
rng = check_random_state(4)
face_ids = rng.randint(test.shape[0], size=(n_faces,))
test = test[face_ids, :]

n_pixels = data.shape[1]
# Upper half of the faces
X_train = train[:, : (n_pixels + 1) // 2]
# Lower half of the faces
y_train = train[:, n_pixels // 2 :]
X_test = test[:, : (n_pixels + 1) // 2]
y_test = test[:, n_pixels // 2 :]

# Fit estimators
ESTIMATORS = {
    "Extra trees": ExtraTreesRegressor(
        n_estimators=10, max_features=32, random_state=0
    ),
    "K-nn": KNeighborsRegressor(),
    "Linear regression": LinearRegression(),
    "Ridge": RidgeCV(),
}

y_test_predict = dict()
for name, estimator in ESTIMATORS.items():
    estimator.fit(X_train, y_train)
    y_test_predict[name] = estimator.predict(X_test)

# Plot the completed faces
image_shape = (64, 64)

n_cols = 1 + len(ESTIMATORS)
plt.figure(figsize=(2.0 * n_cols, 2.26 * n_faces))
plt.suptitle("Face completion with multi-output estimators", size=16)

for i in range(n_faces):
    true_face = np.hstack((X_test[i], y_test[i]))

    if i:
        sub = plt.subplot(n_faces, n_cols, i * n_cols + 1)
    else:
        sub = plt.subplot(n_faces, n_cols, i * n_cols + 1, title="true faces")

    sub.axis("off")
    sub.imshow(
        true_face.reshape(image_shape), cmap=plt.cm.gray, interpolation="nearest"
    )

    for j, est in enumerate(sorted(ESTIMATORS)):
        completed_face = np.hstack((X_test[i], y_test_predict[est][i]))

        if i:
            sub = plt.subplot(n_faces, n_cols, i * n_cols + 2 + j)

        else:
            sub = plt.subplot(n_faces, n_cols, i * n_cols + 2 + j, title=est)

        sub.axis("off")
        sub.imshow(
            completed_face.reshape(image_shape),
            cmap=plt.cm.gray,
            interpolation="nearest",
        )

plt.show()

Total running time of the script: (0 minutes 1.646 seconds)

Related examples

Online learning of a dictionary of parts of faces

Online learning of a dictionary of parts of faces

Feature agglomeration

Feature agglomeration

Faces dataset decompositions

Faces dataset decompositions

Faces recognition example using eigenfaces and SVMs

Faces recognition example using eigenfaces and SVMs

Label Propagation digits active learning

Label Propagation digits active learning

Gallery generated by Sphinx-Gallery