This is documentation for an old release of Scikit-learn (version 1.4). Try the latest stable release (version 1.6) or development (unstable) versions.

Logistic function

Shown in the plot is how the logistic regression would, in this synthetic dataset, classify values as either 0 or 1, i.e. class one or two, using the logistic curve.

plot logistic
# Code source: Gael Varoquaux
# License: BSD 3 clause

import matplotlib.pyplot as plt
import numpy as np
from scipy.special import expit

from sklearn.linear_model import LinearRegression, LogisticRegression

# Generate a toy dataset, it's just a straight line with some Gaussian noise:
xmin, xmax = -5, 5
n_samples = 100
np.random.seed(0)
X = np.random.normal(size=n_samples)
y = (X > 0).astype(float)
X[X > 0] *= 4
X += 0.3 * np.random.normal(size=n_samples)

X = X[:, np.newaxis]

# Fit the classifier
clf = LogisticRegression(C=1e5)
clf.fit(X, y)

# and plot the result
plt.figure(1, figsize=(4, 3))
plt.clf()
plt.scatter(X.ravel(), y, label="example data", color="black", zorder=20)
X_test = np.linspace(-5, 10, 300)

loss = expit(X_test * clf.coef_ + clf.intercept_).ravel()
plt.plot(X_test, loss, label="Logistic Regression Model", color="red", linewidth=3)

ols = LinearRegression()
ols.fit(X, y)
plt.plot(
    X_test,
    ols.coef_ * X_test + ols.intercept_,
    label="Linear Regression Model",
    linewidth=1,
)
plt.axhline(0.5, color=".5")

plt.ylabel("y")
plt.xlabel("X")
plt.xticks(range(-5, 10))
plt.yticks([0, 0.5, 1])
plt.ylim(-0.25, 1.25)
plt.xlim(-4, 10)
plt.legend(
    loc="lower right",
    fontsize="small",
)
plt.tight_layout()
plt.show()

Total running time of the script: (0 minutes 0.109 seconds)

Related examples

Restricted Boltzmann Machine features for digit classification

Restricted Boltzmann Machine features for digit classification

Non-negative least squares

Non-negative least squares

Robust linear estimator fitting

Robust linear estimator fitting

Logistic Regression 3-class Classifier

Logistic Regression 3-class Classifier

Ordinary Least Squares and Ridge Regression Variance

Ordinary Least Squares and Ridge Regression Variance

Gallery generated by Sphinx-Gallery