This is documentation for an old release of Scikit-learn (version 1.3). Try the latest stable release (version 1.6) or development (unstable) versions.
Note
Go to the end to download the full example code or to run this example in your browser via JupyterLite or Binder
SVM: Separating hyperplane for unbalanced classes¶
Find the optimal separating hyperplane using an SVC for classes that are unbalanced.
We first find the separating plane with a plain SVC and then plot (dashed) the separating hyperplane with automatically correction for unbalanced classes.
Note
This example will also work by replacing SVC(kernel="linear")
with SGDClassifier(loss="hinge")
. Setting the loss
parameter
of the SGDClassifier
equal to hinge
will yield behaviour
such as that of a SVC with a linear kernel.
For example try instead of the SVC
:
clf = SGDClassifier(n_iter=100, alpha=0.01)

/home/circleci/project/examples/svm/plot_separating_hyperplane_unbalanced.py:84: MatplotlibDeprecationWarning:
The collections attribute was deprecated in Matplotlib 3.8 and will be removed two minor releases later.
import matplotlib.pyplot as plt
from sklearn import svm
from sklearn.datasets import make_blobs
from sklearn.inspection import DecisionBoundaryDisplay
# we create two clusters of random points
n_samples_1 = 1000
n_samples_2 = 100
centers = [[0.0, 0.0], [2.0, 2.0]]
clusters_std = [1.5, 0.5]
X, y = make_blobs(
n_samples=[n_samples_1, n_samples_2],
centers=centers,
cluster_std=clusters_std,
random_state=0,
shuffle=False,
)
# fit the model and get the separating hyperplane
clf = svm.SVC(kernel="linear", C=1.0)
clf.fit(X, y)
# fit the model and get the separating hyperplane using weighted classes
wclf = svm.SVC(kernel="linear", class_weight={1: 10})
wclf.fit(X, y)
# plot the samples
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired, edgecolors="k")
# plot the decision functions for both classifiers
ax = plt.gca()
disp = DecisionBoundaryDisplay.from_estimator(
clf,
X,
plot_method="contour",
colors="k",
levels=[0],
alpha=0.5,
linestyles=["-"],
ax=ax,
)
# plot decision boundary and margins for weighted classes
wdisp = DecisionBoundaryDisplay.from_estimator(
wclf,
X,
plot_method="contour",
colors="r",
levels=[0],
alpha=0.5,
linestyles=["-"],
ax=ax,
)
plt.legend(
[disp.surface_.collections[0], wdisp.surface_.collections[0]],
["non weighted", "weighted"],
loc="upper right",
)
plt.show()
Total running time of the script: (0 minutes 0.177 seconds)