This is documentation for an old release of Scikit-learn (version 1.3). Try the latest stable release (version 1.6) or development (unstable) versions.
Note
Go to the end to download the full example code or to run this example in your browser via JupyterLite or Binder
Plot multinomial and One-vs-Rest Logistic Regression¶
Plot decision surface of multinomial and One-vs-Rest Logistic Regression. The hyperplanes corresponding to the three One-vs-Rest (OVR) classifiers are represented by the dashed lines.
training score : 0.995 (multinomial)
/home/circleci/project/examples/linear_model/plot_logistic_multinomial.py:47: UserWarning:
No data for colormapping provided via 'c'. Parameters 'cmap' will be ignored
training score : 0.976 (ovr)
/home/circleci/project/examples/linear_model/plot_logistic_multinomial.py:47: UserWarning:
No data for colormapping provided via 'c'. Parameters 'cmap' will be ignored
# Authors: Tom Dupre la Tour <tom.dupre-la-tour@m4x.org>
# License: BSD 3 clause
import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import make_blobs
from sklearn.inspection import DecisionBoundaryDisplay
from sklearn.linear_model import LogisticRegression
# make 3-class dataset for classification
centers = [[-5, 0], [0, 1.5], [5, -1]]
X, y = make_blobs(n_samples=1000, centers=centers, random_state=40)
transformation = [[0.4, 0.2], [-0.4, 1.2]]
X = np.dot(X, transformation)
for multi_class in ("multinomial", "ovr"):
clf = LogisticRegression(
solver="sag", max_iter=100, random_state=42, multi_class=multi_class
).fit(X, y)
# print the training scores
print("training score : %.3f (%s)" % (clf.score(X, y), multi_class))
_, ax = plt.subplots()
DecisionBoundaryDisplay.from_estimator(
clf, X, response_method="predict", cmap=plt.cm.Paired, ax=ax
)
plt.title("Decision surface of LogisticRegression (%s)" % multi_class)
plt.axis("tight")
# Plot also the training points
colors = "bry"
for i, color in zip(clf.classes_, colors):
idx = np.where(y == i)
plt.scatter(
X[idx, 0], X[idx, 1], c=color, cmap=plt.cm.Paired, edgecolor="black", s=20
)
# Plot the three one-against-all classifiers
xmin, xmax = plt.xlim()
ymin, ymax = plt.ylim()
coef = clf.coef_
intercept = clf.intercept_
def plot_hyperplane(c, color):
def line(x0):
return (-(x0 * coef[c, 0]) - intercept[c]) / coef[c, 1]
plt.plot([xmin, xmax], [line(xmin), line(xmax)], ls="--", color=color)
for i, color in zip(clf.classes_, colors):
plot_hyperplane(i, color)
plt.show()
Total running time of the script: (0 minutes 0.211 seconds)