This is documentation for an old release of Scikit-learn (version 1.3). Try the latest stable release (version 1.6) or development (unstable) versions.
Note
Go to the end to download the full example code or to run this example in your browser via JupyterLite or Binder
Cross-validation on Digits Dataset Exercise¶
A tutorial exercise using Cross-validation with an SVM on the Digits dataset.
This exercise is used in the Cross-validation generators part of the Model selection: choosing estimators and their parameters section of the A tutorial on statistical-learning for scientific data processing.

import numpy as np
from sklearn import datasets, svm
from sklearn.model_selection import cross_val_score
X, y = datasets.load_digits(return_X_y=True)
svc = svm.SVC(kernel="linear")
C_s = np.logspace(-10, 0, 10)
scores = list()
scores_std = list()
for C in C_s:
svc.C = C
this_scores = cross_val_score(svc, X, y, n_jobs=1)
scores.append(np.mean(this_scores))
scores_std.append(np.std(this_scores))
# Do the plotting
import matplotlib.pyplot as plt
plt.figure()
plt.semilogx(C_s, scores)
plt.semilogx(C_s, np.array(scores) + np.array(scores_std), "b--")
plt.semilogx(C_s, np.array(scores) - np.array(scores_std), "b--")
locs, labels = plt.yticks()
plt.yticks(locs, list(map(lambda x: "%g" % x, locs)))
plt.ylabel("CV score")
plt.xlabel("Parameter C")
plt.ylim(0, 1.1)
plt.show()
Total running time of the script: (0 minutes 5.160 seconds)