This is documentation for an old release of Scikit-learn (version 1.2). Try the latest stable release (version 1.6) or development (unstable) versions.
Note
Click here to download the full example code or to run this example in your browser via Binder
An example of K-Means++ initialization¶
An example to show the output of the sklearn.cluster.kmeans_plusplus
function for generating initial seeds for clustering.
K-Means++ is used as the default initialization for K-means.

from sklearn.cluster import kmeans_plusplus
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt
# Generate sample data
n_samples = 4000
n_components = 4
X, y_true = make_blobs(
n_samples=n_samples, centers=n_components, cluster_std=0.60, random_state=0
)
X = X[:, ::-1]
# Calculate seeds from k-means++
centers_init, indices = kmeans_plusplus(X, n_clusters=4, random_state=0)
# Plot init seeds along side sample data
plt.figure(1)
colors = ["#4EACC5", "#FF9C34", "#4E9A06", "m"]
for k, col in enumerate(colors):
cluster_data = y_true == k
plt.scatter(X[cluster_data, 0], X[cluster_data, 1], c=col, marker=".", s=10)
plt.scatter(centers_init[:, 0], centers_init[:, 1], c="b", s=50)
plt.title("K-Means++ Initialization")
plt.xticks([])
plt.yticks([])
plt.show()
Total running time of the script: ( 0 minutes 0.065 seconds)