sklearn.metrics.plot_roc_curve(estimator, X, y, *, sample_weight=None, drop_intermediate=True, response_method='auto', name=None, ax=None, pos_label=None, **kwargs)[source]

DEPRECATED: Function plot_roc_curve is deprecated in 1.0 and will be removed in 1.2. Use one of the class methods: sklearn.metrics.RocCurveDisplay.from_predictions or sklearn.metrics.RocCurveDisplay.from_estimator.

Plot Receiver operating characteristic (ROC) curve.

Extra keyword arguments will be passed to matplotlib’s plot.

Read more in the User Guide.

estimatorestimator instance

Fitted classifier or a fitted Pipeline in which the last estimator is a classifier.

X{array-like, sparse matrix} of shape (n_samples, n_features)

Input values.

yarray-like of shape (n_samples,)

Target values.

sample_weightarray-like of shape (n_samples,), default=None

Sample weights.

drop_intermediatebool, default=True

Whether to drop some suboptimal thresholds which would not appear on a plotted ROC curve. This is useful in order to create lighter ROC curves.

response_method{‘predict_proba’, ‘decision_function’, ‘auto’} default=’auto’

Specifies whether to use predict_proba or decision_function as the target response. If set to ‘auto’, predict_proba is tried first and if it does not exist decision_function is tried next.

namestr, default=None

Name of ROC Curve for labeling. If None, use the name of the estimator.

axmatplotlib axes, default=None

Axes object to plot on. If None, a new figure and axes is created.

pos_labelstr or int, default=None

The class considered as the positive class when computing the roc auc metrics. By default, estimators.classes_[1] is considered as the positive class.


Additional keywords arguments passed to matplotlib plot function.

New in version 0.24.


Object that stores computed values.

See also


Compute Receiver operating characteristic (ROC) curve.


ROC Curve visualization given an estimator and some data.


ROC Curve visualisation given the true and predicted values.


Compute the area under the ROC curve.


>>> import matplotlib.pyplot as plt
>>> from sklearn import datasets, metrics, model_selection, svm
>>> X, y = datasets.make_classification(random_state=0)
>>> X_train, X_test, y_train, y_test = model_selection.train_test_split(
...     X, y, random_state=0)
>>> clf = svm.SVC(random_state=0)
>>>, y_train)
>>> metrics.plot_roc_curve(clf, X_test, y_test) 

Examples using sklearn.metrics.plot_roc_curve

Release Highlights for scikit-learn 0.22

Release Highlights for scikit-learn 0.22

Release Highlights for scikit-learn 0.22