sklearn.metrics.plot_roc_curve

sklearn.metrics.plot_roc_curve(estimator, X, y, *, sample_weight=None, drop_intermediate=True, response_method='auto', name=None, ax=None, pos_label=None, **kwargs)[source]

DEPRECATED: Function plot_roc_curve is deprecated in 1.0 and will be removed in 1.2. Use one of the class methods: sklearn.metrics.RocCurveDisplay.from_predictions or sklearn.metrics.RocCurveDisplay.from_estimator.

Plot Receiver operating characteristic (ROC) curve.

Extra keyword arguments will be passed to matplotlib’s plot.

Read more in the User Guide.

Parameters:
estimatorestimator instance

Fitted classifier or a fitted Pipeline in which the last estimator is a classifier.

X{array-like, sparse matrix} of shape (n_samples, n_features)

Input values.

yarray-like of shape (n_samples,)

Target values.

sample_weightarray-like of shape (n_samples,), default=None

Sample weights.

drop_intermediatebool, default=True

Whether to drop some suboptimal thresholds which would not appear on a plotted ROC curve. This is useful in order to create lighter ROC curves.

response_method{‘predict_proba’, ‘decision_function’, ‘auto’} default=’auto’

Specifies whether to use predict_proba or decision_function as the target response. If set to ‘auto’, predict_proba is tried first and if it does not exist decision_function is tried next.

namestr, default=None

Name of ROC Curve for labeling. If None, use the name of the estimator.

axmatplotlib axes, default=None

Axes object to plot on. If None, a new figure and axes is created.

pos_labelstr or int, default=None

The class considered as the positive class when computing the roc auc metrics. By default, estimators.classes_[1] is considered as the positive class.

**kwargsdict

Additional keywords arguments passed to matplotlib plot function.

New in version 0.24.

Returns:
displayRocCurveDisplay

Object that stores computed values.

See also

roc_curve

Compute Receiver operating characteristic (ROC) curve.

RocCurveDisplay.from_estimator

ROC Curve visualization given an estimator and some data.

RocCurveDisplay.from_predictions

ROC Curve visualisation given the true and predicted values.

roc_auc_score

Compute the area under the ROC curve.

Examples

>>> import matplotlib.pyplot as plt
>>> from sklearn import datasets, metrics, model_selection, svm
>>> X, y = datasets.make_classification(random_state=0)
>>> X_train, X_test, y_train, y_test = model_selection.train_test_split(
...     X, y, random_state=0)
>>> clf = svm.SVC(random_state=0)
>>> clf.fit(X_train, y_train)
SVC(random_state=0)
>>> metrics.plot_roc_curve(clf, X_test, y_test) 
<...>
>>> plt.show()
../../_images/sklearn-metrics-plot_roc_curve-1.png

Examples using sklearn.metrics.plot_roc_curve

Release Highlights for scikit-learn 0.22

Release Highlights for scikit-learn 0.22

Release Highlights for scikit-learn 0.22