sklearn.decomposition.DictionaryLearning¶
- 
class 
sklearn.decomposition.DictionaryLearning(n_components=None, *, alpha=1, max_iter=1000, tol=1e-08, fit_algorithm='lars', transform_algorithm='omp', transform_n_nonzero_coefs=None, transform_alpha=None, n_jobs=None, code_init=None, dict_init=None, verbose=False, split_sign=False, random_state=None, positive_code=False, positive_dict=False, transform_max_iter=1000)[source]¶ Dictionary learning
Finds a dictionary (a set of atoms) that can best be used to represent data using a sparse code.
Solves the optimization problem:
(U^*,V^*) = argmin 0.5 || Y - U V ||_2^2 + alpha * || U ||_1 (U,V) with || V_k ||_2 = 1 for all 0 <= k < n_components
Read more in the User Guide.
- Parameters
 - n_componentsint, default=n_features
 number of dictionary elements to extract
- alphafloat, default=1.0
 sparsity controlling parameter
- max_iterint, default=1000
 maximum number of iterations to perform
- tolfloat, default=1e-8
 tolerance for numerical error
- fit_algorithm{‘lars’, ‘cd’}, default=’lars’
 lars: uses the least angle regression method to solve the lasso problem (linear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). Lars will be faster if the estimated components are sparse.
New in version 0.17: cd coordinate descent method to improve speed.
- transform_algorithm{‘lasso_lars’, ‘lasso_cd’, ‘lars’, ‘omp’, ‘threshold’}, default=’omp’
 Algorithm used to transform the data lars: uses the least angle regression method (linear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal matching pursuit to estimate the sparse solution threshold: squashes to zero all coefficients less than alpha from the projection
dictionary * X'New in version 0.17: lasso_cd coordinate descent method to improve speed.
- transform_n_nonzero_coefsint, default=0.1*n_features
 Number of nonzero coefficients to target in each column of the solution. This is only used by
algorithm='lars'andalgorithm='omp'and is overridden byalphain theompcase.- transform_alphafloat, default=1.0
 If
algorithm='lasso_lars'oralgorithm='lasso_cd',alphais the penalty applied to the L1 norm. Ifalgorithm='threshold',alphais the absolute value of the threshold below which coefficients will be squashed to zero. Ifalgorithm='omp',alphais the tolerance parameter: the value of the reconstruction error targeted. In this case, it overridesn_nonzero_coefs.- n_jobsint or None, default=None
 Number of parallel jobs to run.
Nonemeans 1 unless in ajoblib.parallel_backendcontext.-1means using all processors. See Glossary for more details.- code_initarray of shape (n_samples, n_components), default=None
 initial value for the code, for warm restart
- dict_initarray of shape (n_components, n_features), default=None
 initial values for the dictionary, for warm restart
- verbosebool, default=False
 To control the verbosity of the procedure.
- split_signbool, default=False
 Whether to split the sparse feature vector into the concatenation of its negative part and its positive part. This can improve the performance of downstream classifiers.
- random_stateint, RandomState instance or None, optional (default=None)
 Used for initializing the dictionary when
dict_initis not specified, randomly shuffling the data whenshuffleis set toTrue, and updating the dictionary. Pass an int for reproducible results across multiple function calls. See Glossary.- positive_codebool, default=False
 Whether to enforce positivity when finding the code.
New in version 0.20.
- positive_dictbool, default=False
 Whether to enforce positivity when finding the dictionary
New in version 0.20.
- transform_max_iterint, default=1000
 Maximum number of iterations to perform if
algorithm='lasso_cd'orlasso_lars.New in version 0.22.
- Attributes
 - components_array, [n_components, n_features]
 dictionary atoms extracted from the data
- error_array
 vector of errors at each iteration
- n_iter_int
 Number of iterations run.
Notes
References:
J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009: Online dictionary learning for sparse coding (https://www.di.ens.fr/sierra/pdfs/icml09.pdf)
Methods
fit(X[, y])Fit the model from data in X.
fit_transform(X[, y])Fit to data, then transform it.
get_params([deep])Get parameters for this estimator.
set_params(**params)Set the parameters of this estimator.
transform(X)Encode the data as a sparse combination of the dictionary atoms.
- 
__init__(n_components=None, *, alpha=1, max_iter=1000, tol=1e-08, fit_algorithm='lars', transform_algorithm='omp', transform_n_nonzero_coefs=None, transform_alpha=None, n_jobs=None, code_init=None, dict_init=None, verbose=False, split_sign=False, random_state=None, positive_code=False, positive_dict=False, transform_max_iter=1000)[source]¶ Initialize self. See help(type(self)) for accurate signature.
- 
fit(X, y=None)[source]¶ Fit the model from data in X.
- Parameters
 - Xarray-like, shape (n_samples, n_features)
 Training vector, where n_samples in the number of samples and n_features is the number of features.
- yIgnored
 
- Returns
 - selfobject
 Returns the object itself
- 
fit_transform(X, y=None, **fit_params)[source]¶ Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
- Parameters
 - X{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)
 - yndarray of shape (n_samples,), default=None
 Target values.
- **fit_paramsdict
 Additional fit parameters.
- Returns
 - X_newndarray array of shape (n_samples, n_features_new)
 Transformed array.
- 
get_params(deep=True)[source]¶ Get parameters for this estimator.
- Parameters
 - deepbool, default=True
 If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
 - paramsmapping of string to any
 Parameter names mapped to their values.
- 
set_params(**params)[source]¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters
 - **paramsdict
 Estimator parameters.
- Returns
 - selfobject
 Estimator instance.
- 
transform(X)[source]¶ Encode the data as a sparse combination of the dictionary atoms.
Coding method is determined by the object parameter
transform_algorithm.- Parameters
 - Xarray of shape (n_samples, n_features)
 Test data to be transformed, must have the same number of features as the data used to train the model.
- Returns
 - X_newarray, shape (n_samples, n_components)
 Transformed data