sklearn.datasets.make_swiss_roll¶
- 
sklearn.datasets.make_swiss_roll(n_samples=100, *, noise=0.0, random_state=None)[source]¶ Generate a swiss roll dataset.
Read more in the User Guide.
- Parameters
 - n_samplesint, optional (default=100)
 The number of sample points on the S curve.
- noisefloat, optional (default=0.0)
 The standard deviation of the gaussian noise.
- random_stateint, RandomState instance, default=None
 Determines random number generation for dataset creation. Pass an int for reproducible output across multiple function calls. See Glossary.
- Returns
 - Xarray of shape [n_samples, 3]
 The points.
- tarray of shape [n_samples]
 The univariate position of the sample according to the main dimension of the points in the manifold.
Notes
The algorithm is from Marsland [1].
References
- 1
 S. Marsland, “Machine Learning: An Algorithmic Perspective”, Chapter 10, 2009. http://seat.massey.ac.nz/personal/s.r.marsland/Code/10/lle.py