Table Of Contents¶
- Welcome to scikit-learn
 - scikit-learn Tutorials
 - Getting Started
 - User Guide
 - Glossary of Common Terms and API Elements
 - Examples
- Release Highlights
 - Biclustering
 - Calibration
 - Classification
 - Clustering
 - Covariance estimation
 - Cross decomposition
 - Dataset examples
 - Decision Trees
 - Decomposition
 - Ensemble methods
 - Examples based on real world datasets
 - Feature Selection
 - Gaussian Mixture Models
 - Gaussian Process for Machine Learning
 - Generalized Linear Models
 - Inspection
 - Manifold learning
 - Miscellaneous
 - Missing Value Imputation
 - Model Selection
 - Multioutput methods
 - Nearest Neighbors
 - Neural Networks
 - Pipelines and composite estimators
 - Preprocessing
 - Semi Supervised Classification
 - Support Vector Machines
 - Tutorial exercises
 - Working with text documents
 
 - API Reference
sklearn.base: Base classes and utility functionssklearn.calibration: Probability Calibrationsklearn.cluster: Clusteringsklearn.compose: Composite Estimatorssklearn.covariance: Covariance Estimatorssklearn.cross_decomposition: Cross decompositionsklearn.datasets: Datasetssklearn.decomposition: Matrix Decompositionsklearn.discriminant_analysis: Discriminant Analysissklearn.dummy: Dummy estimatorssklearn.ensemble: Ensemble Methodssklearn.exceptions: Exceptions and warningssklearn.experimental: Experimentalsklearn.feature_extraction: Feature Extractionsklearn.feature_selection: Feature Selectionsklearn.gaussian_process: Gaussian Processessklearn.impute: Imputesklearn.inspection: inspectionsklearn.isotonic: Isotonic regressionsklearn.kernel_approximationKernel Approximationsklearn.kernel_ridgeKernel Ridge Regressionsklearn.linear_model: Linear Modelssklearn.manifold: Manifold Learningsklearn.metrics: Metricssklearn.mixture: Gaussian Mixture Modelssklearn.model_selection: Model Selectionsklearn.multiclass: Multiclass and multilabel classificationsklearn.multioutput: Multioutput regression and classificationsklearn.naive_bayes: Naive Bayessklearn.neighbors: Nearest Neighborssklearn.neural_network: Neural network modelssklearn.pipeline: Pipelinesklearn.preprocessing: Preprocessing and Normalizationsklearn.random_projection: Random projectionsklearn.semi_supervisedSemi-Supervised Learningsklearn.svm: Support Vector Machinessklearn.tree: Decision Treessklearn.utils: Utilities- Recently deprecated
 
 - Developer’s Guide