Developers’ Tips and Tricks¶
Productivity and sanity-preserving tips¶
In this section we gather some useful advice and tools that may increase your quality-of-life when reviewing pull requests, running unit tests, and so forth. Some of these tricks consist of userscripts that require a browser extension such as TamperMonkey or GreaseMonkey; to set up userscripts you must have one of these extensions installed, enabled and running. We provide userscripts as GitHub gists; to install them, click on the “Raw” button on the gist page.
Folding and unfolding outdated diffs on pull requests¶
GitHub hides discussions on PRs when the corresponding lines of code have been changed in the mean while. This userscript provides a shortcut (Control-Alt-P at the time of writing but look at the code to be sure) to unfold all such hidden discussions at once, so you can catch up.
Checking out pull requests as remote-tracking branches¶
In your local fork, add to your .git/config
, under the [remote
"upstream"]
heading, the line:
fetch = +refs/pull/*/head:refs/remotes/upstream/pr/*
You may then use git checkout pr/PR_NUMBER
to navigate to the code of the
pull-request with the given number. (Read more in this gist.)
Display code coverage in pull requests¶
To overlay the code coverage reports generated by the CodeCov continuous integration, consider this browser extension. The coverage of each line will be displayed as a color background behind the line number.
Useful pytest aliases and flags¶
The full test suite takes fairly long to run. For faster iterations, it is possibly to select a subset of tests using pytest selectors. In particular, one can run a single test based on its node ID:
pytest -v sklearn/linear_model/tests/test_logistic.py::test_sparsify
or use the -k pytest parameter to select tests based on their name. For instance,:
pytest sklearn/tests/test_common.py -v -k LogisticRegression
will run all common tests for the LogisticRegression
estimator.
When a unit test fails, the following tricks can make debugging easier:
The command line argument
pytest -l
instructs pytest to print the local variables when a failure occurs.The argument
pytest --pdb
drops into the Python debugger on failure. To instead drop into the rich IPython debuggeripdb
, you may set up a shell alias to:pytest --pdbcls=IPython.terminal.debugger:TerminalPdb --capture no
Other pytest
options that may become useful include:
-x
which exits on the first failed test
--lf
to rerun the tests that failed on the previous run
--ff
to rerun all previous tests, running the ones that failed first
-s
so that pytest does not capture the output ofprint()
statements
--tb=short
or--tb=line
to control the length of the logs
--runxfail
also run tests marked as a known failure (XFAIL) and report errors.
Since our continuous integration tests will error if
FutureWarning
isn’t properly caught,
it is also recommended to run pytest
along with the
-Werror::FutureWarning
flag.
Standard replies for reviewing¶
It may be helpful to store some of these in GitHub’s saved replies for reviewing:
- Issue: Usage questions
You're asking a usage question. The issue tracker is mainly for bugs and new features. For usage questions, it is recommended to try [Stack Overflow](https://stackoverflow.com/questions/tagged/scikit-learn) or [the Mailing List](https://mail.python.org/mailman/listinfo/scikit-learn).
- Issue: You’re welcome to update the docs
Please feel free to offer a pull request updating the documentation if you feel it could be improved.
- Issue: Self-contained example for bug
Please provide [self-contained example code](https://stackoverflow.com/help/mcve), including imports and data (if possible), so that other contributors can just run it and reproduce your issue. Ideally your example code should be minimal.
- Issue: Software versions
To help diagnose your issue, please paste the output of: ```py import sklearn; sklearn.show_versions() ``` Thanks.
- Issue: Code blocks
Readability can be greatly improved if you [format](https://help.github.com/articles/creating-and-highlighting-code-blocks/) your code snippets and complete error messages appropriately. For example: ```python print(something) ``` generates: ```python print(something) ``` And: ```pytb Traceback (most recent call last): File "<stdin>", line 1, in <module> ImportError: No module named 'hello' ``` generates: ```pytb Traceback (most recent call last): File "<stdin>", line 1, in <module> ImportError: No module named 'hello' ``` You can edit your issue descriptions and comments at any time to improve readability. This helps maintainers a lot. Thanks!
- Issue/Comment: Linking to code
Friendly advice: for clarity's sake, you can link to code like [this](https://help.github.com/articles/creating-a-permanent-link-to-a-code-snippet/).
- Issue/Comment: Linking to comments
Please use links to comments, which make it a lot easier to see what you are referring to, rather than just linking to the issue. See [this](https://stackoverflow.com/questions/25163598/how-do-i-reference-a-specific-issue-comment-on-github) for more details.
- PR-NEW: Better description and title
Thanks for the pull request! Please make the title of the PR more descriptive. The title will become the commit message when this is merged. You should state what issue (or PR) it fixes/resolves in the description using the syntax described [here](http://scikit-learn.org/dev/developers/contributing.html#contributing-pull-requests).
- PR-NEW: Fix #
Please use "Fix #issueNumber" in your PR description (and you can do it more than once). This way the associated issue gets closed automatically when the PR is merged. For more details, look at [this](https://github.com/blog/1506-closing-issues-via-pull-requests).
- PR-NEW or Issue: Maintenance cost
Every feature we include has a [maintenance cost](http://scikit-learn.org/dev/faq.html#why-are-you-so-selective-on-what-algorithms-you-include-in-scikit-learn). Our maintainers are mostly volunteers. For a new feature to be included, we need evidence that it is often useful and, ideally, [well-established](http://scikit-learn.org/dev/faq.html#what-are-the-inclusion-criteria-for-new-algorithms) in the literature or in practice. That doesn't stop you implementing it for yourself and publishing it in a separate repository, or even [scikit-learn-contrib](https://scikit-learn-contrib.github.io).
- PR-WIP: What’s needed before merge?
Please clarify (perhaps as a TODO list in the PR description) what work you believe still needs to be done before it can be reviewed for merge. When it is ready, please prefix the PR title with `[MRG]`.
- PR-WIP: Regression test needed
Please add a [non-regression test](https://en.wikipedia.org/wiki/Non-regression_testing) that would fail at master but pass in this PR.
- PR-WIP: PEP8
You have some [PEP8](https://www.python.org/dev/peps/pep-0008/) violations, whose details you can see in the Circle CI `lint` job. It might be worth configuring your code editor to check for such errors on the fly, so you can catch them before committing.
- PR-MRG: Patience
Before merging, we generally require two core developers to agree that your pull request is desirable and ready. [Please be patient](http://scikit-learn.org/dev/faq.html#why-is-my-pull-request-not-getting-any-attention), as we mostly rely on volunteered time from busy core developers. (You are also welcome to help us out with [reviewing other PRs](http://scikit-learn.org/dev/developers/contributing.html#code-review-guidelines).)
- PR-MRG: Add to what’s new
Please add an entry to the change log at `doc/whats_new/v*.rst`. Like the other entries there, please reference this pull request with `:pr:` and credit yourself (and other contributors if applicable) with `:user:`.
- PR: Don’t change unrelated
Please do not change unrelated lines. It makes your contribution harder to review and may introduce merge conflicts to other pull requests.
Debugging memory errors in Cython with valgrind¶
While python/numpy’s built-in memory management is relatively robust, it can lead to performance penalties for some routines. For this reason, much of the high-performance code in scikit-learn in written in cython. This performance gain comes with a tradeoff, however: it is very easy for memory bugs to crop up in cython code, especially in situations where that code relies heavily on pointer arithmetic.
Memory errors can manifest themselves a number of ways. The easiest ones to debug are often segmentation faults and related glibc errors. Uninitialized variables can lead to unexpected behavior that is difficult to track down. A very useful tool when debugging these sorts of errors is valgrind.
Valgrind is a command-line tool that can trace memory errors in a variety of code. Follow these steps:
Install valgrind on your system.
Download the python valgrind suppression file: valgrind-python.supp.
Follow the directions in the README.valgrind file to customize your python suppressions. If you don’t, you will have spurious output coming related to the python interpreter instead of your own code.
Run valgrind as follows:
$> valgrind -v --suppressions=valgrind-python.supp python my_test_script.py
The result will be a list of all the memory-related errors, which reference lines in the C-code generated by cython from your .pyx file. If you examine the referenced lines in the .c file, you will see comments which indicate the corresponding location in your .pyx source file. Hopefully the output will give you clues as to the source of your memory error.
For more information on valgrind and the array of options it has, see the tutorials and documentation on the valgrind web site.