sklearn.ensemble
.VotingClassifier¶
-
class
sklearn.ensemble.
VotingClassifier
(estimators, voting=’hard’, weights=None, n_jobs=None, flatten_transform=True)[source]¶ Soft Voting/Majority Rule classifier for unfitted estimators.
New in version 0.17.
Read more in the User Guide.
Parameters: - estimators : list of (string, estimator) tuples
Invoking the
fit
method on theVotingClassifier
will fit clones of those original estimators that will be stored in the class attributeself.estimators_
. An estimator can be set toNone
or'drop'
usingset_params
.- voting : str, {‘hard’, ‘soft’} (default=’hard’)
If ‘hard’, uses predicted class labels for majority rule voting. Else if ‘soft’, predicts the class label based on the argmax of the sums of the predicted probabilities, which is recommended for an ensemble of well-calibrated classifiers.
- weights : array-like, shape (n_classifiers,), optional (default=`None`)
Sequence of weights (
float
orint
) to weight the occurrences of predicted class labels (hard
voting) or class probabilities before averaging (soft
voting). Uses uniform weights ifNone
.- n_jobs : int or None, optional (default=None)
The number of jobs to run in parallel for
fit
.None
means 1 unless in ajoblib.parallel_backend
context.-1
means using all processors. See Glossary for more details.- flatten_transform : bool, optional (default=True)
Affects shape of transform output only when voting=’soft’ If voting=’soft’ and flatten_transform=True, transform method returns matrix with shape (n_samples, n_classifiers * n_classes). If flatten_transform=False, it returns (n_classifiers, n_samples, n_classes).
Attributes: - estimators_ : list of classifiers
The collection of fitted sub-estimators as defined in
estimators
that are notNone
.- named_estimators_ : Bunch object, a dictionary with attribute access
Attribute to access any fitted sub-estimators by name.
New in version 0.20.
- classes_ : array-like, shape (n_predictions,)
The classes labels.
See also
VotingRegressor
- Prediction voting regressor.
Examples
>>> import numpy as np >>> from sklearn.linear_model import LogisticRegression >>> from sklearn.naive_bayes import GaussianNB >>> from sklearn.ensemble import RandomForestClassifier, VotingClassifier >>> clf1 = LogisticRegression(solver='lbfgs', multi_class='multinomial', ... random_state=1) >>> clf2 = RandomForestClassifier(n_estimators=50, random_state=1) >>> clf3 = GaussianNB() >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> y = np.array([1, 1, 1, 2, 2, 2]) >>> eclf1 = VotingClassifier(estimators=[ ... ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard') >>> eclf1 = eclf1.fit(X, y) >>> print(eclf1.predict(X)) [1 1 1 2 2 2] >>> np.array_equal(eclf1.named_estimators_.lr.predict(X), ... eclf1.named_estimators_['lr'].predict(X)) True >>> eclf2 = VotingClassifier(estimators=[ ... ('lr', clf1), ('rf', clf2), ('gnb', clf3)], ... voting='soft') >>> eclf2 = eclf2.fit(X, y) >>> print(eclf2.predict(X)) [1 1 1 2 2 2] >>> eclf3 = VotingClassifier(estimators=[ ... ('lr', clf1), ('rf', clf2), ('gnb', clf3)], ... voting='soft', weights=[2,1,1], ... flatten_transform=True) >>> eclf3 = eclf3.fit(X, y) >>> print(eclf3.predict(X)) [1 1 1 2 2 2] >>> print(eclf3.transform(X).shape) (6, 6)
Methods
fit
(self, X, y[, sample_weight])Fit the estimators. fit_transform
(self, X[, y])Fit to data, then transform it. get_params
(self[, deep])Get the parameters of the ensemble estimator predict
(self, X)Predict class labels for X. score
(self, X, y[, sample_weight])Returns the mean accuracy on the given test data and labels. set_params
(self, \*\*params)Setting the parameters for the ensemble estimator transform
(self, X)Return class labels or probabilities for X for each estimator. -
__init__
(self, estimators, voting=’hard’, weights=None, n_jobs=None, flatten_transform=True)[source]¶
-
fit
(self, X, y, sample_weight=None)[source]¶ Fit the estimators.
Parameters: - X : {array-like, sparse matrix}, shape (n_samples, n_features)
Training vectors, where n_samples is the number of samples and n_features is the number of features.
- y : array-like, shape (n_samples,)
Target values.
- sample_weight : array-like, shape (n_samples,) or None
Sample weights. If None, then samples are equally weighted. Note that this is supported only if all underlying estimators support sample weights.
Returns: - self : object
-
fit_transform
(self, X, y=None, **fit_params)[source]¶ Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
Parameters: - X : numpy array of shape [n_samples, n_features]
Training set.
- y : numpy array of shape [n_samples]
Target values.
Returns: - X_new : numpy array of shape [n_samples, n_features_new]
Transformed array.
-
get_params
(self, deep=True)[source]¶ Get the parameters of the ensemble estimator
Parameters: - deep : bool
Setting it to True gets the various estimators and the parameters of the estimators as well
-
predict
(self, X)[source]¶ Predict class labels for X.
Parameters: - X : {array-like, sparse matrix}, shape (n_samples, n_features)
The input samples.
Returns: - maj : array-like, shape (n_samples,)
Predicted class labels.
-
predict_proba
¶ Compute probabilities of possible outcomes for samples in X.
Parameters: - X : {array-like, sparse matrix}, shape (n_samples, n_features)
The input samples.
Returns: - avg : array-like, shape (n_samples, n_classes)
Weighted average probability for each class per sample.
-
score
(self, X, y, sample_weight=None)[source]¶ Returns the mean accuracy on the given test data and labels.
In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.
Parameters: - X : array-like, shape = (n_samples, n_features)
Test samples.
- y : array-like, shape = (n_samples) or (n_samples, n_outputs)
True labels for X.
- sample_weight : array-like, shape = [n_samples], optional
Sample weights.
Returns: - score : float
Mean accuracy of self.predict(X) wrt. y.
-
set_params
(self, **params)[source]¶ Setting the parameters for the ensemble estimator
Valid parameter keys can be listed with get_params().
Parameters: - **params : keyword arguments
Specific parameters using e.g. set_params(parameter_name=new_value) In addition, to setting the parameters of the ensemble estimator, the individual estimators of the ensemble estimator can also be set or replaced by setting them to None.
Examples
# In this example, the RandomForestClassifier is removed clf1 = LogisticRegression() clf2 = RandomForestClassifier() eclf = VotingClassifier(estimators=[(‘lr’, clf1), (‘rf’, clf2)] eclf.set_params(rf=None)
-
transform
(self, X)[source]¶ Return class labels or probabilities for X for each estimator.
Parameters: - X : {array-like, sparse matrix}, shape (n_samples, n_features)
Training vectors, where n_samples is the number of samples and n_features is the number of features.
Returns: - probabilities_or_labels
- If
voting='soft'
andflatten_transform=True
: returns array-like of shape (n_classifiers, n_samples * n_classes), being class probabilities calculated by each classifier.
- If
voting='soft' and `flatten_transform=False
: array-like of shape (n_classifiers, n_samples, n_classes)
- If
voting='hard'
: array-like of shape (n_samples, n_classifiers), being class labels predicted by each classifier.
- If