sklearn.neighbors
.KernelDensity¶
-
class
sklearn.neighbors.
KernelDensity
(bandwidth=1.0, algorithm='auto', kernel='gaussian', metric='euclidean', atol=0, rtol=0, breadth_first=True, leaf_size=40, metric_params=None)[source]¶ Kernel Density Estimation
Read more in the User Guide.
Parameters: - bandwidth : float
The bandwidth of the kernel.
- algorithm : string
The tree algorithm to use. Valid options are [‘kd_tree’|’ball_tree’|’auto’]. Default is ‘auto’.
- kernel : string
The kernel to use. Valid kernels are [‘gaussian’|’tophat’|’epanechnikov’|’exponential’|’linear’|’cosine’] Default is ‘gaussian’.
- metric : string
The distance metric to use. Note that not all metrics are valid with all algorithms. Refer to the documentation of
BallTree
andKDTree
for a description of available algorithms. Note that the normalization of the density output is correct only for the Euclidean distance metric. Default is ‘euclidean’.- atol : float
The desired absolute tolerance of the result. A larger tolerance will generally lead to faster execution. Default is 0.
- rtol : float
The desired relative tolerance of the result. A larger tolerance will generally lead to faster execution. Default is 1E-8.
- breadth_first : boolean
If true (default), use a breadth-first approach to the problem. Otherwise use a depth-first approach.
- leaf_size : int
Specify the leaf size of the underlying tree. See
BallTree
orKDTree
for details. Default is 40.- metric_params : dict
Additional parameters to be passed to the tree for use with the metric. For more information, see the documentation of
BallTree
orKDTree
.
Methods
fit
(X[, y, sample_weight])Fit the Kernel Density model on the data. get_params
([deep])Get parameters for this estimator. sample
([n_samples, random_state])Generate random samples from the model. score
(X[, y])Compute the total log probability density under the model. score_samples
(X)Evaluate the density model on the data. set_params
(**params)Set the parameters of this estimator. -
__init__
(bandwidth=1.0, algorithm='auto', kernel='gaussian', metric='euclidean', atol=0, rtol=0, breadth_first=True, leaf_size=40, metric_params=None)[source]¶
-
fit
(X, y=None, sample_weight=None)[source]¶ Fit the Kernel Density model on the data.
Parameters: - X : array_like, shape (n_samples, n_features)
List of n_features-dimensional data points. Each row corresponds to a single data point.
- sample_weight : array_like, shape (n_samples,), optional
List of sample weights attached to the data X.
-
get_params
(deep=True)[source]¶ Get parameters for this estimator.
Parameters: - deep : boolean, optional
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: - params : mapping of string to any
Parameter names mapped to their values.
-
sample
(n_samples=1, random_state=None)[source]¶ Generate random samples from the model.
Currently, this is implemented only for gaussian and tophat kernels.
Parameters: - n_samples : int, optional
Number of samples to generate. Defaults to 1.
- random_state : int, RandomState instance or None. default to None
If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random.
Returns: - X : array_like, shape (n_samples, n_features)
List of samples.
-
score
(X, y=None)[source]¶ Compute the total log probability density under the model.
Parameters: - X : array_like, shape (n_samples, n_features)
List of n_features-dimensional data points. Each row corresponds to a single data point.
Returns: - logprob : float
Total log-likelihood of the data in X. This is normalized to be a probability density, so the value will be low for high-dimensional data.
-
score_samples
(X)[source]¶ Evaluate the density model on the data.
Parameters: - X : array_like, shape (n_samples, n_features)
An array of points to query. Last dimension should match dimension of training data (n_features).
Returns: - density : ndarray, shape (n_samples,)
The array of log(density) evaluations. These are normalized to be probability densities, so values will be low for high-dimensional data.
-
set_params
(**params)[source]¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.Returns: - self