sklearn.metrics.pairwise.manhattan_distances¶
- 
sklearn.metrics.pairwise.manhattan_distances(X, Y=None, sum_over_features=True, size_threshold=None)[source]¶
- Compute the L1 distances between the vectors in X and Y. - With sum_over_features equal to False it returns the componentwise distances. - Read more in the User Guide. - Parameters: - X : array_like
- An array with shape (n_samples_X, n_features). 
- Y : array_like, optional
- An array with shape (n_samples_Y, n_features). 
- sum_over_features : bool, default=True
- If True the function returns the pairwise distance matrix else it returns the componentwise L1 pairwise-distances. Not supported for sparse matrix inputs. 
- size_threshold : int, default=5e8
- Unused parameter. 
 - Returns: - D : array
- If sum_over_features is False shape is (n_samples_X * n_samples_Y, n_features) and D contains the componentwise L1 pairwise-distances (ie. absolute difference), else shape is (n_samples_X, n_samples_Y) and D contains the pairwise L1 distances. 
 - Examples - >>> from sklearn.metrics.pairwise import manhattan_distances >>> manhattan_distances([[3]], [[3]]) array([[0.]]) >>> manhattan_distances([[3]], [[2]]) array([[1.]]) >>> manhattan_distances([[2]], [[3]]) array([[1.]]) >>> manhattan_distances([[1, 2], [3, 4]], [[1, 2], [0, 3]]) array([[0., 2.], [4., 4.]]) >>> import numpy as np >>> X = np.ones((1, 2)) >>> y = np.full((2, 2), 2.) >>> manhattan_distances(X, y, sum_over_features=False) array([[1., 1.], [1., 1.]]) 
 
        