sklearn.metrics.accuracy_score¶
- 
sklearn.metrics.accuracy_score(y_true, y_pred, normalize=True, sample_weight=None)[source]¶
- Accuracy classification score. - In multilabel classification, this function computes subset accuracy: the set of labels predicted for a sample must exactly match the corresponding set of labels in y_true. - Read more in the User Guide. - Parameters: - y_true : 1d array-like, or label indicator array / sparse matrix
- Ground truth (correct) labels. 
- y_pred : 1d array-like, or label indicator array / sparse matrix
- Predicted labels, as returned by a classifier. 
- normalize : bool, optional (default=True)
- If - False, return the number of correctly classified samples. Otherwise, return the fraction of correctly classified samples.
- sample_weight : array-like of shape = [n_samples], optional
- Sample weights. 
 - Returns: - score : float
- If - normalize == True, return the fraction of correctly classified samples (float), else returns the number of correctly classified samples (int).- The best performance is 1 with - normalize == Trueand the number of samples with- normalize == False.
 - See also - Notes - In binary and multiclass classification, this function is equal to the - jaccard_similarity_scorefunction.- Examples - >>> import numpy as np >>> from sklearn.metrics import accuracy_score >>> y_pred = [0, 2, 1, 3] >>> y_true = [0, 1, 2, 3] >>> accuracy_score(y_true, y_pred) 0.5 >>> accuracy_score(y_true, y_pred, normalize=False) 2 - In the multilabel case with binary label indicators: - >>> accuracy_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2))) 0.5 
 
         
 
 
 
 
 
