sklearn.semi_supervised
.LabelPropagation¶
-
class
sklearn.semi_supervised.
LabelPropagation
(kernel=’rbf’, gamma=20, n_neighbors=7, alpha=None, max_iter=1000, tol=0.001, n_jobs=1)[source]¶ Label Propagation classifier
Read more in the User Guide.
Parameters: kernel : {‘knn’, ‘rbf’, callable}
String identifier for kernel function to use or the kernel function itself. Only ‘rbf’ and ‘knn’ strings are valid inputs. The function passed should take two inputs, each of shape [n_samples, n_features], and return a [n_samples, n_samples] shaped weight matrix.
gamma : float
Parameter for rbf kernel
n_neighbors : integer > 0
Parameter for knn kernel
alpha : float
Clamping factor.
Deprecated since version 0.19: This parameter will be removed in 0.21. ‘alpha’ is fixed to zero in ‘LabelPropagation’.
max_iter : integer
Change maximum number of iterations allowed
tol : float
Convergence tolerance: threshold to consider the system at steady state
n_jobs : int, optional (default = 1)
The number of parallel jobs to run. If
-1
, then the number of jobs is set to the number of CPU cores.Attributes: X_ : array, shape = [n_samples, n_features]
Input array.
classes_ : array, shape = [n_classes]
The distinct labels used in classifying instances.
label_distributions_ : array, shape = [n_samples, n_classes]
Categorical distribution for each item.
transduction_ : array, shape = [n_samples]
Label assigned to each item via the transduction.
n_iter_ : int
Number of iterations run.
See also
LabelSpreading
- Alternate label propagation strategy more robust to noise
References
Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label propagation. Technical Report CMU-CALD-02-107, Carnegie Mellon University, 2002 http://pages.cs.wisc.edu/~jerryzhu/pub/CMU-CALD-02-107.pdf
Examples
>>> from sklearn import datasets >>> from sklearn.semi_supervised import LabelPropagation >>> label_prop_model = LabelPropagation() >>> iris = datasets.load_iris() >>> rng = np.random.RandomState(42) >>> random_unlabeled_points = rng.rand(len(iris.target)) < 0.3 >>> labels = np.copy(iris.target) >>> labels[random_unlabeled_points] = -1 >>> label_prop_model.fit(iris.data, labels) ... LabelPropagation(...)
Methods
fit
(X, y)get_params
([deep])Get parameters for this estimator. predict
(X)Performs inductive inference across the model. predict_proba
(X)Predict probability for each possible outcome. score
(X, y[, sample_weight])Returns the mean accuracy on the given test data and labels. set_params
(**params)Set the parameters of this estimator. -
__init__
(kernel=’rbf’, gamma=20, n_neighbors=7, alpha=None, max_iter=1000, tol=0.001, n_jobs=1)[source]¶
-
get_params
(deep=True)[source]¶ Get parameters for this estimator.
Parameters: deep : boolean, optional
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: params : mapping of string to any
Parameter names mapped to their values.
-
predict
(X)[source]¶ Performs inductive inference across the model.
Parameters: X : array_like, shape = [n_samples, n_features]
Returns: y : array_like, shape = [n_samples]
Predictions for input data
-
predict_proba
(X)[source]¶ Predict probability for each possible outcome.
Compute the probability estimates for each single sample in X and each possible outcome seen during training (categorical distribution).
Parameters: X : array_like, shape = [n_samples, n_features]
Returns: probabilities : array, shape = [n_samples, n_classes]
Normalized probability distributions across class labels
-
score
(X, y, sample_weight=None)[source]¶ Returns the mean accuracy on the given test data and labels.
In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.
Parameters: X : array-like, shape = (n_samples, n_features)
Test samples.
y : array-like, shape = (n_samples) or (n_samples, n_outputs)
True labels for X.
sample_weight : array-like, shape = [n_samples], optional
Sample weights.
Returns: score : float
Mean accuracy of self.predict(X) wrt. y.
-
set_params
(**params)[source]¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.Returns: self :