sklearn.preprocessing
.LabelBinarizer¶
-
class
sklearn.preprocessing.
LabelBinarizer
(neg_label=0, pos_label=1, sparse_output=False)[source]¶ Binarize labels in a one-vs-all fashion
Several regression and binary classification algorithms are available in the scikit. A simple way to extend these algorithms to the multi-class classification case is to use the so-called one-vs-all scheme.
At learning time, this simply consists in learning one regressor or binary classifier per class. In doing so, one needs to convert multi-class labels to binary labels (belong or does not belong to the class). LabelBinarizer makes this process easy with the transform method.
At prediction time, one assigns the class for which the corresponding model gave the greatest confidence. LabelBinarizer makes this easy with the inverse_transform method.
Read more in the User Guide.
Parameters: neg_label : int (default: 0)
Value with which negative labels must be encoded.
pos_label : int (default: 1)
Value with which positive labels must be encoded.
sparse_output : boolean (default: False)
True if the returned array from transform is desired to be in sparse CSR format.
Attributes: classes_ : array of shape [n_class]
Holds the label for each class.
y_type_ : str,
Represents the type of the target data as evaluated by utils.multiclass.type_of_target. Possible type are ‘continuous’, ‘continuous-multioutput’, ‘binary’, ‘multiclass’, ‘multiclass-multioutput’, ‘multilabel-indicator’, and ‘unknown’.
sparse_input_ : boolean,
True if the input data to transform is given as a sparse matrix, False otherwise.
See also
label_binarize
- function to perform the transform operation of LabelBinarizer with fixed classes.
sklearn.preprocessing.OneHotEncoder
- encode categorical integer features using a one-hot aka one-of-K scheme.
Examples
>>> from sklearn import preprocessing >>> lb = preprocessing.LabelBinarizer() >>> lb.fit([1, 2, 6, 4, 2]) LabelBinarizer(neg_label=0, pos_label=1, sparse_output=False) >>> lb.classes_ array([1, 2, 4, 6]) >>> lb.transform([1, 6]) array([[1, 0, 0, 0], [0, 0, 0, 1]])
Binary targets transform to a column vector
>>> lb = preprocessing.LabelBinarizer() >>> lb.fit_transform(['yes', 'no', 'no', 'yes']) array([[1], [0], [0], [1]])
Passing a 2D matrix for multilabel classification
>>> import numpy as np >>> lb.fit(np.array([[0, 1, 1], [1, 0, 0]])) LabelBinarizer(neg_label=0, pos_label=1, sparse_output=False) >>> lb.classes_ array([0, 1, 2]) >>> lb.transform([0, 1, 2, 1]) array([[1, 0, 0], [0, 1, 0], [0, 0, 1], [0, 1, 0]])
Methods
fit
(y)Fit label binarizer fit_transform
(y)Fit label binarizer and transform multi-class labels to binary labels. get_params
([deep])Get parameters for this estimator. inverse_transform
(Y[, threshold])Transform binary labels back to multi-class labels set_params
(**params)Set the parameters of this estimator. transform
(y)Transform multi-class labels to binary labels -
fit
(y)[source]¶ Fit label binarizer
Parameters: y : array of shape [n_samples,] or [n_samples, n_classes]
Target values. The 2-d matrix should only contain 0 and 1, represents multilabel classification.
Returns: self : returns an instance of self.
-
fit_transform
(y)[source]¶ Fit label binarizer and transform multi-class labels to binary labels.
The output of transform is sometimes referred to as the 1-of-K coding scheme.
Parameters: y : array or sparse matrix of shape [n_samples,] or [n_samples, n_classes]
Target values. The 2-d matrix should only contain 0 and 1, represents multilabel classification. Sparse matrix can be CSR, CSC, COO, DOK, or LIL.
Returns: Y : array or CSR matrix of shape [n_samples, n_classes]
Shape will be [n_samples, 1] for binary problems.
-
get_params
(deep=True)[source]¶ Get parameters for this estimator.
Parameters: deep : boolean, optional
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: params : mapping of string to any
Parameter names mapped to their values.
-
inverse_transform
(Y, threshold=None)[source]¶ Transform binary labels back to multi-class labels
Parameters: Y : numpy array or sparse matrix with shape [n_samples, n_classes]
Target values. All sparse matrices are converted to CSR before inverse transformation.
threshold : float or None
Threshold used in the binary and multi-label cases.
Use 0 when
Y
contains the output of decision_function (classifier). Use 0.5 whenY
contains the output of predict_proba.If None, the threshold is assumed to be half way between neg_label and pos_label.
Returns: y : numpy array or CSR matrix of shape [n_samples] Target values.
Notes
In the case when the binary labels are fractional (probabilistic), inverse_transform chooses the class with the greatest value. Typically, this allows to use the output of a linear model’s decision_function method directly as the input of inverse_transform.
-
set_params
(**params)[source]¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.Returns: self :
-
transform
(y)[source]¶ Transform multi-class labels to binary labels
The output of transform is sometimes referred to by some authors as the 1-of-K coding scheme.
Parameters: y : array or sparse matrix of shape [n_samples,] or [n_samples, n_classes]
Target values. The 2-d matrix should only contain 0 and 1, represents multilabel classification. Sparse matrix can be CSR, CSC, COO, DOK, or LIL.
Returns: Y : numpy array or CSR matrix of shape [n_samples, n_classes]
Shape will be [n_samples, 1] for binary problems.