sklearn.pipeline
.make_union¶
-
sklearn.pipeline.
make_union
(*transformers, **kwargs)[source]¶ Construct a FeatureUnion from the given transformers.
This is a shorthand for the FeatureUnion constructor; it does not require, and does not permit, naming the transformers. Instead, they will be given names automatically based on their types. It also does not allow weighting.
Parameters: *transformers : list of estimators
n_jobs : int, optional
Number of jobs to run in parallel (default 1).
Returns: f : FeatureUnion
Examples
>>> from sklearn.decomposition import PCA, TruncatedSVD >>> from sklearn.pipeline import make_union >>> make_union(PCA(), TruncatedSVD()) FeatureUnion(n_jobs=1, transformer_list=[('pca', PCA(copy=True, iterated_power='auto', n_components=None, random_state=None, svd_solver='auto', tol=0.0, whiten=False)), ('truncatedsvd', TruncatedSVD(algorithm='randomized', n_components=2, n_iter=5, random_state=None, tol=0.0))], transformer_weights=None)