sklearn.multioutput
.MultiOutputClassifier¶
-
class
sklearn.multioutput.
MultiOutputClassifier
(estimator, n_jobs=1)[source]¶ Multi target classification
This strategy consists of fitting one classifier per target. This is a simple strategy for extending classifiers that do not natively support multi-target classification
Parameters: estimator : estimator object
An estimator object implementing fit, score and predict_proba.
n_jobs : int, optional, default=1
The number of jobs to use for the computation. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. The number of jobs to use for the computation. It does each target variable in y in parallel.
Attributes: estimators_ : list of
n_output
estimatorsEstimators used for predictions.
Methods
fit
(X, y[, sample_weight])Fit the model to data. get_params
([deep])Get parameters for this estimator. partial_fit
(X, y[, classes, sample_weight])Incrementally fit the model to data. predict
(X)Predict multi-output variable using a model trained for each target variable. predict_proba
(X)Probability estimates. score
(X, y)“Returns the mean accuracy on the given test data and labels. set_params
(**params)Set the parameters of this estimator. -
fit
(X, y, sample_weight=None)[source]¶ Fit the model to data. Fit a separate model for each output variable.
Parameters: X : (sparse) array-like, shape (n_samples, n_features)
Data.
y : (sparse) array-like, shape (n_samples, n_outputs)
Multi-output targets. An indicator matrix turns on multilabel estimation.
sample_weight : array-like, shape = (n_samples) or None
Sample weights. If None, then samples are equally weighted. Only supported if the underlying regressor supports sample weights.
Returns: self : object
Returns self.
-
get_params
(deep=True)[source]¶ Get parameters for this estimator.
Parameters: deep : boolean, optional
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: params : mapping of string to any
Parameter names mapped to their values.
-
partial_fit
(X, y, classes=None, sample_weight=None)[source]¶ Incrementally fit the model to data. Fit a separate model for each output variable.
Parameters: X : (sparse) array-like, shape (n_samples, n_features)
Data.
y : (sparse) array-like, shape (n_samples, n_outputs)
Multi-output targets.
classes : list of numpy arrays, shape (n_outputs)
Each array is unique classes for one output in str/int Can be obtained by via
[np.unique(y[:, i]) for i in range(y.shape[1])]
, where y is the target matrix of the entire dataset. This argument is required for the first call to partial_fit and can be omitted in the subsequent calls. Note that y doesn’t need to contain all labels in classes.sample_weight : array-like, shape = (n_samples) or None
Sample weights. If None, then samples are equally weighted. Only supported if the underlying regressor supports sample weights.
Returns: self : object
Returns self.
-
predict
(X)[source]¶ - Predict multi-output variable using a model
- trained for each target variable.
Parameters: X : (sparse) array-like, shape (n_samples, n_features)
Data.
Returns: y : (sparse) array-like, shape (n_samples, n_outputs)
Multi-output targets predicted across multiple predictors. Note: Separate models are generated for each predictor.
-
predict_proba
(X)[source]¶ Probability estimates. Returns prediction probabilities for each class of each output.
Parameters: X : array-like, shape (n_samples, n_features)
Data
Returns: p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1.
The class probabilities of the input samples. The order of the classes corresponds to that in the attribute classes_.
-
score
(X, y)[source]¶ “Returns the mean accuracy on the given test data and labels.
Parameters: X : array-like, shape [n_samples, n_features]
Test samples
y : array-like, shape [n_samples, n_outputs]
True values for X
Returns: scores : float
accuracy_score of self.predict(X) versus y
-
set_params
(**params)[source]¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.Returns: self :
-