sklearn.linear_model
.lasso_stability_path¶
-
sklearn.linear_model.
lasso_stability_path
(X, y, scaling=0.5, random_state=None, n_resampling=200, n_grid=100, sample_fraction=0.75, eps=8.881784197001252e-16, n_jobs=1, verbose=False)[source]¶ DEPRECATED: The function lasso_stability_path is deprecated in 0.19 and will be removed in 0.21.
Stability path based on randomized Lasso estimates
Parameters: X : array-like, shape = [n_samples, n_features]
training data.
- y : array-like, shape = [n_samples]
target values.
- scaling : float, optional, default=0.5
The alpha parameter in the stability selection article used to randomly scale the features. Should be between 0 and 1.
- random_state : int, RandomState instance or None, optional, default=None
The generator used to randomize the design. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random.
- n_resampling : int, optional, default=200
Number of randomized models.
- n_grid : int, optional, default=100
Number of grid points. The path is linearly reinterpolated on a grid between 0 and 1 before computing the scores.
- sample_fraction : float, optional, default=0.75
The fraction of samples to be used in each randomized design. Should be between 0 and 1. If 1, all samples are used.
- eps : float, optional
Smallest value of alpha / alpha_max considered
- n_jobs : integer, optional
Number of CPUs to use during the resampling. If ‘-1’, use all the CPUs
- verbose : boolean or integer, optional
Sets the verbosity amount
Returns: alphas_grid : array, shape ~ [n_grid]
The grid points between 0 and 1: alpha/alpha_max
- scores_path : array, shape = [n_features, n_grid]
The scores for each feature along the path.