This is documentation for an old release of Scikit-learn (version 0.19). Try the latest stable release (version 1.6) or development (unstable) versions.
This is documentation for an old release of Scikit-learn (version 0.19). Try the latest stable release (version 1.6) or development (unstable) versions.
sklearn.datasets
.make_sparse_uncorrelated¶sklearn.datasets.
make_sparse_uncorrelated
(n_samples=100, n_features=10, random_state=None)[source]¶Generate a random regression problem with sparse uncorrelated design
This dataset is described in Celeux et al [1]. as:
X ~ N(0, 1)
y(X) = X[:, 0] + 2 * X[:, 1] - 2 * X[:, 2] - 1.5 * X[:, 3]
Only the first 4 features are informative. The remaining features are useless.
Read more in the User Guide.
Parameters: | n_samples : int, optional (default=100)
n_features : int, optional (default=10)
random_state : int, RandomState instance or None, optional (default=None)
|
---|---|
Returns: | X : array of shape [n_samples, n_features]
y : array of shape [n_samples]
|
References
[R148] | G. Celeux, M. El Anbari, J.-M. Marin, C. P. Robert, “Regularization in regression: comparing Bayesian and frequentist methods in a poorly informative situation”, 2009. |