FeatureHasher and DictVectorizer Comparison¶
Compares FeatureHasher and DictVectorizer by using both to vectorize text documents.
The example demonstrates syntax and speed only; it doesn’t actually do anything useful with the extracted vectors. See the example scripts {document_classification_20newsgroups,clustering}.py for actual learning on text documents.
A discrepancy between the number of terms reported for DictVectorizer and for FeatureHasher is to be expected due to hash collisions.
# Author: Lars Buitinck
# License: BSD 3 clause
from __future__ import print_function
from collections import defaultdict
import re
import sys
from time import time
import numpy as np
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction import DictVectorizer, FeatureHasher
def n_nonzero_columns(X):
"""Returns the number of non-zero columns in a CSR matrix X."""
return len(np.unique(X.nonzero()[1]))
def tokens(doc):
"""Extract tokens from doc.
This uses a simple regex to break strings into tokens. For a more
principled approach, see CountVectorizer or TfidfVectorizer.
"""
return (tok.lower() for tok in re.findall(r"\w+", doc))
def token_freqs(doc):
"""Extract a dict mapping tokens from doc to their frequencies."""
freq = defaultdict(int)
for tok in tokens(doc):
freq[tok] += 1
return freq
categories = [
'alt.atheism',
'comp.graphics',
'comp.sys.ibm.pc.hardware',
'misc.forsale',
'rec.autos',
'sci.space',
'talk.religion.misc',
]
# Uncomment the following line to use a larger set (11k+ documents)
#categories = None
print(__doc__)
print("Usage: %s [n_features_for_hashing]" % sys.argv[0])
print(" The default number of features is 2**18.")
print()
try:
n_features = int(sys.argv[1])
except IndexError:
n_features = 2 ** 18
except ValueError:
print("not a valid number of features: %r" % sys.argv[1])
sys.exit(1)
print("Loading 20 newsgroups training data")
raw_data = fetch_20newsgroups(subset='train', categories=categories).data
data_size_mb = sum(len(s.encode('utf-8')) for s in raw_data) / 1e6
print("%d documents - %0.3fMB" % (len(raw_data), data_size_mb))
print()
print("DictVectorizer")
t0 = time()
vectorizer = DictVectorizer()
vectorizer.fit_transform(token_freqs(d) for d in raw_data)
duration = time() - t0
print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration))
print("Found %d unique terms" % len(vectorizer.get_feature_names()))
print()
print("FeatureHasher on frequency dicts")
t0 = time()
hasher = FeatureHasher(n_features=n_features)
X = hasher.transform(token_freqs(d) for d in raw_data)
duration = time() - t0
print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration))
print("Found %d unique terms" % n_nonzero_columns(X))
print()
print("FeatureHasher on raw tokens")
t0 = time()
hasher = FeatureHasher(n_features=n_features, input_type="string")
X = hasher.transform(tokens(d) for d in raw_data)
duration = time() - t0
print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration))
print("Found %d unique terms" % n_nonzero_columns(X))
Total running time of the script: ( 0 minutes 0.000 seconds)