sklearn.datasets.make_sparse_spd_matrix¶
- 
sklearn.datasets.make_sparse_spd_matrix(dim=1, alpha=0.95, norm_diag=False, smallest_coef=0.1, largest_coef=0.9, random_state=None)[source]¶
- Generate a sparse symmetric definite positive matrix. - Read more in the User Guide. - Parameters: - dim : integer, optional (default=1) - The size of the random matrix to generate. - alpha : float between 0 and 1, optional (default=0.95) - The probability that a coefficient is zero (see notes). Larger values enforce more sparsity. - random_state : int, RandomState instance or None, optional (default=None) - If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random. - largest_coef : float between 0 and 1, optional (default=0.9) - The value of the largest coefficient. - smallest_coef : float between 0 and 1, optional (default=0.1) - The value of the smallest coefficient. - norm_diag : boolean, optional (default=False) - Whether to normalize the output matrix to make the leading diagonal elements all 1 - Returns: - prec : sparse matrix of shape (dim, dim) - The generated matrix. - See also - Notes - The sparsity is actually imposed on the cholesky factor of the matrix. Thus alpha does not translate directly into the filling fraction of the matrix itself. 
 
         
