sklearn.datasets.make_s_curve¶
- 
sklearn.datasets.make_s_curve(n_samples=100, noise=0.0, random_state=None)[source]¶
- Generate an S curve dataset. - Read more in the User Guide. - Parameters: - n_samples : int, optional (default=100) - The number of sample points on the S curve. - noise : float, optional (default=0.0) - The standard deviation of the gaussian noise. - random_state : int, RandomState instance or None, optional (default=None) - If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random. - Returns: - X : array of shape [n_samples, 3] - The points. - t : array of shape [n_samples] - The univariate position of the sample according to the main dimension of the points in the manifold. 
 
         
